Skip to main content

Modeling Neuronal Firing in the Presence of Refractoriness

  • Conference paper
  • First Online:
Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

  • 1046 Accesses

Abstract

A mathematical characterization of the membrane potential as an instantaneous return process in the presence of refractoriness is investigated for diffusion models of single neuron’s activity. The statistical features of the random variable modeling the number of neuronal firings is analyzed by including the additional assumption of the existence of neuronal refractoriness. Asymptotic exact formulas for the multiple firing probabilities and for the expected number of produced firings are finally given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buonocore, A., Giorno, V., Nobile, A.G., Ricciardi, L.M.: Towards modeling refractoriness for single neuron’s activity. In Cybernetics mid Systems 2002 Vol. 1 (Trappl, R., ed.). Austrian Society for Cybernetics Studies, Vienna. (2002) 319–324

    Google Scholar 

  2. Buonocore, A., Giorno, V., Nobile, A.G., Ricciardi, L.M.: A neuronal modeling paradigm in the presence of refractoriness. BioSystcms 67 (2002) 35–43.

    Article  Google Scholar 

  3. Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55 (1952) 468–518.

    Article  MathSciNet  Google Scholar 

  4. Gcrstcin, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4 (1964) 41–68.

    Article  Google Scholar 

  5. Giorno, V., Lánský, P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybern. 58 (1988) 387–404.

    Article  MATH  Google Scholar 

  6. Giorno, V., Nobile, A.G., Ricciardi, L.M.: On the asymptotic behavior of first-passage-time densities for one-dimensional diffusion processes and varying bound-aries. Adv. Appl. Prob. 22 (1990) 883–914.

    Article  MATH  MathSciNet  Google Scholar 

  7. Giorno, V., Nobile, A.G., Ricciardi, L.M.: Instantaneous return process and neuronal firings. In Cybernetics and Systems Research 1992 (Trappl, R., ed.). World Scientific (1992) 829–836.

    Google Scholar 

  8. Giorno, V., Nobile, A.G., Ricciardi, L.M.: On asymptotic behaviors of stochastic models for single neuron’s activity. In Cybernetics and System, 1996 (Trappl, R., cd.). Austrian Society for Cybernetic Studies (1996) 524–529.

    Google Scholar 

  9. Lánský, P., Smith, C.E.: The effect of a random initial value in neuronal first-passage-time models. Math. Biosci. 93 (1989) 191–215.

    Article  MATH  MathSciNet  Google Scholar 

  10. Ricciardi, L.M., Esposito, F.: On some distribution functions for non-linear switching elements with finite dead time. Kybernetik 3 (1966) 148–152.

    Article  Google Scholar 

  11. Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: On the instantaneous return process for neuronal diffusion models. In Structure: from Physics to General System (Marinaro, M., Scarpctta, G., cds.). World Scientific (1992) 78–94.

    Google Scholar 

  12. Ricciardi, L.M., Di Crcsccnzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Japonica 50 No. 2 (1999) 247–322.

    MATH  Google Scholar 

  13. Ricciardi, L.M., Lánský, P.: Diffusion models of neuron activity. In The Handbook of Brain Theory and Neural Networks (Arbib, M.A., cd.). The MIT Press, Cambridge (2002) 343–348.

    Google Scholar 

  14. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. 81 (1951) 617–623.

    Article  MATH  MathSciNet  Google Scholar 

  15. Teich, M.C., Matin, L., Cantor, B.I.: Refractoriness in the maintained discharge of the cats retinal ganglion cell., J. Opt. Soc. Am. 68(3) (1978) 386–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ricciardi, L., Esposilo, G., Giorno, V., Valerio, C. (2003). Modeling Neuronal Firing in the Presence of Refractoriness. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics