Abstract
This work concerns estimation of multidimensional nonlinear regression models using multilayer perceptron (MLP). For unidimensional data, the ordinary least squares estimator matches with the Gaussian maximum likelihood estimator. However, in the multidimensional case, the Gaussian maximum likelihood estimator minimize the determinant of the empirical error’s covariance matrix. This paper is devoted to the study of this estimator using a MLP. In particular, we show how to modify the backpropagation algorithm to minimize such cost function and we give heuristic explanations in favor of the use of such function in the multidimensional case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cottrell, M. Girard, B. and Y., Mangeas, M., Muller, C.: Neural Modeling for Time Series: a Statistical Stepwise Method forWeight Elimination. IEEE Trans on Neural Networks 6:6 (1995) 1355–1364
Gallant, R.: Non linear statistical models. J. Wiley and Sons (1987)
Gourieroux, C., Monfort, A., Trognon, A.: Pseudo maximum likelihood methods: Theory. Econometrica 52:3 (1984) 681–700
Ljung, L.: System identification: Theory for the user. Prentice Hall (1999)
Magnus, J., Neudecker, H.: Matrix differential calculus with applications in statistics and econometrics. J. Wiley and Sons (1988)
Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: The art of scientific computing. Cambridge University Press (1992)
Sussmann, H.: Uniqueness of the wieghts for minimal feedforward nets with a given input-output map. Neural Networks, 5 (1992) 589–593
White, H.: Artificial neural networks. Blackwell (1992)
Yao, J.F.: On least square estimation for stable nonlinear AR processes. The Annals of Institut of Mathematical Statistics 52 (2000) 316–331
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rynkiewicz, J. (2003). Estimation of Multidimensional Regression Model with Multilayer Perceptrons. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_40
Download citation
DOI: https://doi.org/10.1007/3-540-44868-3_40
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40210-7
Online ISBN: 978-3-540-44868-6
eBook Packages: Springer Book Archive