Skip to main content

Estimation of Multidimensional Regression Model with Multilayer Perceptrons

  • Conference paper
  • First Online:
Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

  • 1040 Accesses

Abstract

This work concerns estimation of multidimensional nonlinear regression models using multilayer perceptron (MLP). For unidimensional data, the ordinary least squares estimator matches with the Gaussian maximum likelihood estimator. However, in the multidimensional case, the Gaussian maximum likelihood estimator minimize the determinant of the empirical error’s covariance matrix. This paper is devoted to the study of this estimator using a MLP. In particular, we show how to modify the backpropagation algorithm to minimize such cost function and we give heuristic explanations in favor of the use of such function in the multidimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cottrell, M. Girard, B. and Y., Mangeas, M., Muller, C.: Neural Modeling for Time Series: a Statistical Stepwise Method forWeight Elimination. IEEE Trans on Neural Networks 6:6 (1995) 1355–1364

    Article  Google Scholar 

  2. Gallant, R.: Non linear statistical models. J. Wiley and Sons (1987)

    Google Scholar 

  3. Gourieroux, C., Monfort, A., Trognon, A.: Pseudo maximum likelihood methods: Theory. Econometrica 52:3 (1984) 681–700

    Article  MATH  MathSciNet  Google Scholar 

  4. Ljung, L.: System identification: Theory for the user. Prentice Hall (1999)

    Google Scholar 

  5. Magnus, J., Neudecker, H.: Matrix differential calculus with applications in statistics and econometrics. J. Wiley and Sons (1988)

    Google Scholar 

  6. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: The art of scientific computing. Cambridge University Press (1992)

    Google Scholar 

  7. Sussmann, H.: Uniqueness of the wieghts for minimal feedforward nets with a given input-output map. Neural Networks, 5 (1992) 589–593

    Article  Google Scholar 

  8. White, H.: Artificial neural networks. Blackwell (1992)

    Google Scholar 

  9. Yao, J.F.: On least square estimation for stable nonlinear AR processes. The Annals of Institut of Mathematical Statistics 52 (2000) 316–331

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rynkiewicz, J. (2003). Estimation of Multidimensional Regression Model with Multilayer Perceptrons. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics