Skip to main content

Neurally Inspired Mechanisms for the Dynamic Visual Attention Map Generation Task

  • Conference paper
  • First Online:
Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

  • 1040 Accesses

Abstract

A model for dynamic visual attention is briefly introduced in this paper. A PSM (problem-solving method) for a generic “Dynamic Attention Map Generation” task to obtain a Dynamic Attention Map from a dynamic scene is proposed. Our approach enables tracking objects that keep attention in accordance with a set of characteristics defined by the observer. This paper mainly focuses on those subtasks of the model inspired in neuronal mechanisms, such as accumulative computation and lateral interaction. The subtasks which incorporate these biologically plausible capacities are called “Working Memory Generation” and “Thresholded Permanency Calculation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eriksen, C. W., St. James, J. D.: Visual attention within and around the field of focal attention: A zoom lens model. Perception and Psychophysics 40 (1986) 225–240

    Google Scholar 

  2. Fernández, M.A., Mira, J.: Permanence memory: A system for real time motion analysis in image sequences. IAPR Workshop on Machine Vision Applications, MVA’92 (1992) 249–252

    Google Scholar 

  3. Fernández, M.A., Mira, J., López, M.T., Alvarez, J.R., Manjarrés, A., Barro, S.: Local accumulation of persistent activity at synaptic level: Application to motion analysis. In: Mira, J., Sandoval, F. (eds.): From Natural to Artificial Neural Computation, IWANN’95, LNCS 930. Springer-Verlag (1995) 137–143

    Google Scholar 

  4. Fernández, M.A.: Una arquitectura neuronal para la detección de blancos móviles. Unpublished Ph.D. dissertation (1995)

    Google Scholar 

  5. Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22:14 (2001) 1517–1524

    Article  MATH  Google Scholar 

  6. Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50C (2003) 341–364

    Google Scholar 

  7. Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36:5 (2003) 1131–1142

    Article  MATH  Google Scholar 

  8. Fernández-Caballero, A., Mira, J., Férnandez, M.A., Delgado, A.E.: On motion detection through a multi-layer neural network architecture. Neural Networks 16:2 (2003) 205–222

    Article  Google Scholar 

  9. Koch, C., & Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4 (1985) 219–227.

    Google Scholar 

  10. Itti, L., Koch, C. Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 1254–1259

    Article  Google Scholar 

  11. Moore, C. M., Yantis, S., Vaughan, B.: Object-based visual selection: Evidence from perceptual completion. Psychological Science 9 (1998) 104–110

    Article  Google Scholar 

  12. Posner, M.I., Snyder, C.R.R., Davidson, B.J.: Attention and the detection of signals. Journal of Experimental Psychology: General 109 (1980) 160–174

    Article  Google Scholar 

  13. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12 (1980) 97–136

    Article  Google Scholar 

  14. Vecera, S.P.: Toward a biased competition account of object-based segregation and attention. Brain and Mind 1 (2000) 353–385

    Article  Google Scholar 

  15. Wolfe, J.M.: Guided Search 2.0.: A revised model of visual search. Psychonomic Bulletin & Review 1 (1994) 202–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López, M.T., Fernández, M.A., Fernández-Caballero, A., Delgado, A.E. (2003). Neurally Inspired Mechanisms for the Dynamic Visual Attention Map Generation Task. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_88

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_88

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics