Skip to main content

Multimodule Artificial Neural Network Architectures for Autonomous Robot Control Through Behavior Modulation

  • Conference paper
  • First Online:
Artificial Neural Nets Problem Solving Methods (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2687))

Included in the following conference series:

Abstract

In this paper we consider one of the big challenges when constructing modular behavior architectures for the control of real systems, that is, how to decide which module or combination of modules takes control of the actuators in order to implement the behavior the robot must perform when confronted with a perceptual situation. The problem is addressed from the perspective of combinations of ANNs, each implementing a behavior, that interact through the modulation of their outputs. This approach is demonstrated using a three way predator-prey-food problem where the behavior of the individual should change depending on its energetic situation. The behavior architecture is incrementally evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A. (1992), “Schema Theory”, in The Encyclopedia of Artificial Intelligence, 2nd ed., S. Shapiro (Ed.), Wiley, New York, N.Y., pp. 1427–43.

    Google Scholar 

  2. Arkin, R.C. (1998), Behavior Based Robotics, MIT Press, Cambridge, MA.

    Google Scholar 

  3. Becerra, J.A., Santos, J., and Duro, R.J. (1999), “Progressive Construction of Compound Behavior Controllers for Autonomous Robots Using Temporal Information”, Advances in Artificial Life, Dario Floreano, Jean-Daniel Nicoud, Francesco Mondada (Eds.), LNCS, 1674, Springer-Verlag, Berlin, pp. 324–328.

    Chapter  Google Scholar 

  4. Brooks, R.A. (1986), Achieving Artificial Intelligence through Building Robots, A.I. Memo 898, MIT, AI Lab.

    Google Scholar 

  5. Colombetti, M., Dorigo, M., and Borghi, G. (1996), “Behavior Analysis and Training-A Methodology for Behavior Engineering”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, No. 3, pp. 365–380.

    Article  Google Scholar 

  6. Duro, R.J., Santos, J., and Gomez, A. (1995), “Synaptic Modulation Based Artificial Neural Networks”, From Natural to Artificial Neural Computation, J. Mira, F. Sandoval (Eds.), LNCS, Vol. 930, Springer-Verlag, Berlin, pp. 31–36.

    Chapter  Google Scholar 

  7. Husbands, P., Smith, T., O’shea, M., Jakobi, N., Anderson, J., Philippides, A. (1998), “Brains, Gases and Robots”, Perspectives Neural Comp., V. 2, pp. 51–63.

    Article  Google Scholar 

  8. Ishiguro, A., Otsu, K., Fujii, A., and Uchikawa, Y. (2000), “Evolving an Adaptive Controller for a Legged-Robot with Dynamically-Rearranging Neural Networks”, Proc. Supp. 6th Int. Conf. on Simulation of Adaptive Behavior, J-A Meyer, A. Berthoz, D. Floreano, H.L. Roitblat, S.W. Wilson (Eds.), pp. 235–244.

    Google Scholar 

  9. Marín, J. and Solé, R.V. (1999), “Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 272–286.

    Article  Google Scholar 

  10. Meyer, J-A., Doncieux, S., Filliat, D., and Guillot, A., (2002), “Evolutionary Approaches to Neural Control of Rolling, Walking, Swimming and Flying Animats or Robots”, R.J. Duro, J. Santos and M. Grafia (Eds.), Biologically Inspired Robot Behavior Engineering, Vol. 109, Physica-Verlag, pp. 1–43.

    Google Scholar 

  11. Harvey, I. (1996), “Artificial Evolution and Real Robots”, Proceedings of International Symposium on Artificial Life and Robotics (AROB), Masanori Sugisaka (Ed.), Beppu, Japan, pp. 138–141.

    Google Scholar 

  12. Pfeifer, R., and Scheier, C. (1999), Understanding Intelligence, MIT Press.

    Google Scholar 

  13. Urzelai, J., Floreano, D., Dorigo, M., and Colombetti, M. (1998), “Incremental Robot Shaping”, Connection Science Journal, Vol. 10, No. 384, pp. 341–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becerra, J.A., Santos, J., Duro, R.J. (2003). Multimodule Artificial Neural Network Architectures for Autonomous Robot Control Through Behavior Modulation. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44869-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40211-4

  • Online ISBN: 978-3-540-44869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics