Skip to main content

Feature Vectors Generation for Detection of Microcalcifications in Digitized Mammography Using Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Nets Problem Solving Methods (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2687))

Included in the following conference series:

Abstract

This paper presents and tests a methodology that sinergically combines a select of successful advances in each step to automatically classify microcalcifications (MCs) in digitized mammography. The method combines selection of regions of interest (ROI), enhancement by histogram adaptive techniques, processing by multiscale wavelet and gray level statistical techniques, generation, clustering and labelling of suboptimal feature vectors (SFVs), and a Neural feature selector and detector to finally classify the MCs. The experimental results with the method promise interesting advances in the problem of automatic detection and classification of MCs1.

This research has been supported by the National Spanish Research Institution “Comisin Interministerial de Ciencia y Tecnologa-CICYT” as part of the project TIC2002-03519

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cancer facts and figures. American Cancer Society, Atlanta, GA., 1993.

    Google Scholar 

  2. D.B. Kopans. Breast Imaging. Lippincott-Raven Publishers, Philadelphia, 1998.

    Google Scholar 

  3. S.B. Buchbinder, I. S. Leichter, R.B. Lederman, B. Novak, P. N. Banberg, H. Coopersmith, and S. I. Fields. Can the size of microcalcifications predict malignancy of clusters at mammography? Academic Radiology, 9(1):18–25, September 2002.

    Article  Google Scholar 

  4. University of South Florida. Digital database for screrening mammography. ftp://figment.csee.usf.edu/pub/DDSM/cases/, December 2001.

  5. R.M. Naga, M.R. Rangaraj, and J. E. Leo. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans. on med. Imaging, 19(10):1032–1043, 2000.

    Article  Google Scholar 

  6. A.F. Laine, Schuler, S. J. Fan, and W. Huda. Mammographic feature enhancement by multiscale analysis. IEEE Trans. Medical Imaging, 13(8):725–740, 1994.

    Article  Google Scholar 

  7. W. J.H. Veldkamp and N. Karssemeijer. Normalization of local contrast in mammograms. IEEE Transactions on Medical Imaging, 19(7):731–738, 2000.

    Article  Google Scholar 

  8. Yu. Songyang and G. Ling. A cad system for automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Transactions on Medical Imaging, 2(2):115–126, 2000.

    Article  Google Scholar 

  9. T.C. Wang and N. B. Karayiannis. Detection of microcalcifications in digital mammograms. IEEE Trans. Med. Imaging, 17(4):498–509, 1998.

    Article  Google Scholar 

  10. I. Daubechies, M. Antonini, M. Barlaud, and P. Mathieu. Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2):205–220, 1992.

    Article  Google Scholar 

  11. D. Andina and A. Vega. Detection of microcalcifications in mammograms by the combination of a neural detector and multiscale feature enhancement. Bio-Inspired Applications of Connectionism. Lecture Notes in Computer Science. Springer-Verlag, 2085:385–392, 2001.

    Chapter  Google Scholar 

  12. L.M. Belue and Jr. K.W. Bauer. Determining input feature for multilayer perceptrons. Neurocomputing, 7(2):111–122, 1995.

    Article  Google Scholar 

  13. D. F. Specht. A general regression neural network. IEEE Transactions on Neural Networks, 2(6):568–576, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vega-Corona, A., Álvarez-Vellisco, A., Andina, D. (2003). Feature Vectors Generation for Detection of Microcalcifications in Digitized Mammography Using Neural Networks. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_74

Download citation

  • DOI: https://doi.org/10.1007/3-540-44869-1_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40211-4

  • Online ISBN: 978-3-540-44869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics