Skip to main content

Intravascular Ultrasound Images Vessel Characterization Using AdaBoost

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

  • 647 Accesses

Abstract

This paper presents a method for accurate location of the vessel borders based on boosting of classifiers and feature selection. Intravascular Ultrasound Images (IVUS) are an excellent tool for direct visualization of vascular pathologies and evaluation of the lumen and plaque in coronary arteries. Nowadays, the most common methods to separate the tissue from the lumen are based on gray levels providing non-satisfactory segmentations. In this paper, we propose and analyze a new approach to separate tissue from lumen based on an ensemble method for classification and feature selection. We perform a supervised learning of local texture patterns of the plaque and lumen regions and build a large feature space using different texture extractors. A classifier is constructed by selecting a small number of important features using AdaBoost. Feature selection is achieved by a modification of the AdaBoost. A snake is set to deform to achieve continuity on the classified image. Different tests on medical images show the advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.E. Schapire: “The Boosting Approach to Machine Learning. An Overview”. MSRI Workshop on Nonlinear Estimation and Classification. 2002.

    Google Scholar 

  2. P. Viola and M. Jones: “Rapid Object Detection using a Boosted Cascade of Simple Features”. Accepted Conference on Computer Vision and Pattern Recognition 2001.

    Google Scholar 

  3. G. Ratsch, T. Onoda, and K.-R. Muller: “Soft Margins for AdaBoost”. NeuroColt2 Technical Report Series. NC-TR-1998-021.

    Google Scholar 

  4. J. Malik, S. Belongie, T. Leung, and J. Shi: “Contour and Texture Analysis for Image Segmentation”. International Journal of Computer Vision. 43(1), 7–27,2001.

    Article  MATH  Google Scholar 

  5. J. Puzicha, T. Hoffman, and J. Buhmann: “Unsupervised texture segmentation in a deterministic anhealing framework”. Trans. on Pattern Recognition and Machine Intelligence. 20(8): 803–818,1998.

    Article  Google Scholar 

  6. M. Sonka, X. Zhang, M. Siebes et al.: “Segmentation of intravascular ultrasound images: A knowledge based approach”. IEEE Trans. on Medical Imaging. 14: 719–732. 1995.

    Article  Google Scholar 

  7. X. Zhang, C.R. McKay, and M. Sonka: “Tissue Characterization in intravascular ultrasound images”. IEEE Trans. on Medical Imaging. 17: 889–899. 1998.

    Article  Google Scholar 

  8. C. von Birgelen, A. van der Lugt, A. Nicosia et al.: “Computerized assessment of coronary lumen and atherosclerotic plaque dimensions in three-dimensional intravascular ultrasound correlated with histomorphometry”. Amer. J. Cardiol. 78: 1202–1209, 1996.

    Article  Google Scholar 

  9. J.D. Klingensmith, R. Shekhar, and D.G. Vince: “Evaluation of Three-Dimensional Segmentation Algorithms for Identification of Luminal and Medial-Adventitial Borders in Intravascular Ultrasound Images”, IEEE Trans. on Medical Imaging, 19(10): 996–1011, 2000.

    Article  Google Scholar 

  10. R. Haralick, K. Shanmugam, and I. Dinstein: “Textural Features for Image Classification”. IEEE Trans. System, Man, Cybernetics. 3: 610–621. 1973.

    Article  Google Scholar 

  11. P.P. Ohanian and R.C. Dubes: “Performance Evaluation for Four Classes of Textural Features”. Pattern Recognition. 25(8), 819–833, 1992.

    Article  Google Scholar 

  12. Trygve Randen and John H. Husoy: “Filtering for Texture Classification: A Comparative Study”. Pattern Recognition. 21(4): 291–310. 1999.

    Google Scholar 

  13. M. Turceyan: “Moment Based texture segmentation”. Pattern Recognition Letters. 15: 659–668. 1994.

    Article  Google Scholar 

  14. J. Martinez and F. Thomas: “Efficient computation of local geometrical moments”. Submitted to IEEE Trans. on Image Processing.

    Google Scholar 

  15. Richard O. Duda, Peter E. Hart, and David G. Stork: “Pattern Classification”. Wiley-Interscience, 2001. 2nd Ed.

    Google Scholar 

  16. M. Kass, A. Witkin, and D. Terzopoulos: “Snakes, Active contour models”. Int. J. Computer Vision, 1(4): 321–331. 1987.

    Article  Google Scholar 

  17. V. Caselles, F. Catte, T. Coll, and F. Dibos: “A geometric model for active contours”. Numerische Mathematik. 66: 1–31, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. McInerney and D. Terzopoulos: “Deformable models in medical images analysis: a survey”. Medical Image Analysis. 1(2): 91–108, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pujol, O., Rosales, M., Radeva, P., Nofrerias-Fernández, E. (2003). Intravascular Ultrasound Images Vessel Characterization Using AdaBoost. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics