Skip to main content

Simulating Cardiac Mechanoenergetics in the Left Ventricle

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

  • 622 Accesses

Abstract

Distribution of myocardial perfusion and oxygen consumption within the cardiac wall is spatially heterogeneous. The cause of this heterogeneity is still unclear, but it is expected to be in close relation with the heterogeneity in mechanical function in the heart. In order to study the mechanical contraction and energy consumption by the cardiac wall, we developed a finite element model of the left ventricle with active properties described by the Huxley-type cross-bridge model. Here we present an overview of the developed model and the following simulation results obtained by the model. First, an important property of energy transformation from biochemical form to mechanical work in the cardiac muscle, the linear relationship between the oxygen consumption and the stress-strain area, is replicated by a cross-bridge model. Second, by using the developed cross-bridge model, the correlation between ejection fraction of the left ventricle and heterogeneity of sarcomere strain, developed stress and ATP consumption in the left ventricular wall is established. Third, an experimentally observed linear relationship between oxygen consumption and the pressure-volume area can be predicted theoretically from a linear relationship between the oxygen consumption and the stress-strain area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Arts, P.C. Veenstra, and R.S. Reneman. Epicardial deformation and left ventricular wall mechanisms during ejection in the dog. Am J Physiol, 243(3):H379–H390, 1982.

    Google Scholar 

  2. J.B. Bassingthwaighte, D.A. Beard, and Z. Li. The mechanical and metabolic basis of myocardial blood flow heterogeneity. Basic Res Cardiol, 96(6):582–594, 2001.

    Article  Google Scholar 

  3. P.H.M. Bovendeerd, J.M. Huyghe, T. Arts, D.H. van Campen, and R.S. Reneman. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech, 27(7): 941–951, 1994.

    Article  Google Scholar 

  4. D.L. Brutsaert, N.M. de Clerck, M.A. Goethals, and P.R. Housmans. Relaxation of ventricular cardiac muscle. J Physiol (Lond), 283:469–480, 1978.

    Google Scholar 

  5. R. Cooke and E. Pate. The effects of adp and phosphate on the contraction of muscle fibers. Biophys J, 48(5):789–798, 1985.

    Article  Google Scholar 

  6. R. Cooke, H. White, and E. Pate. A model of the release of myosin heads from actin in rapidly contracting muscle fibers. Biophys J, 66(3 Pt 1): 778–788, 1994.

    Google Scholar 

  7. A. Deussen, C.W. Flesche, T. Lauer, M. Sonntag, and J. Schrader. Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation. Pflugers Arch, 432(3):451–461, 1996.

    Article  Google Scholar 

  8. E. Eisenberg and T.L. Hill. Muscle contraction and free energy transduction in biological systems. Science, 227(4690):999–1006, 1985.

    Article  Google Scholar 

  9. G. Gong, K. Ugurbil, and J. Zhang. Transmural metabolic heterogeneity at high cardiac work states. Am J Physiol, 277(1 Pt 2):H236–H242, 1999.

    Google Scholar 

  10. A.B. Groeneveld, J.H. van Beek, and D.J. Alders. Assessing heterogeneous distribution of blood flow and metabolism in the heart. Basic Res Cardiol, 96(6):575–581, 2001.

    Article  Google Scholar 

  11. T.L. Hill. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog Biophys Mol Biol, 28:267–340, 1974.

    Article  Google Scholar 

  12. R. Hisano and G. Cooper. Correlation of force-length area with oxygen consumption in ferret papillary muscle. Circ Res, 61(3):318–328, 1987.

    Google Scholar 

  13. P.J. Hunter, A.D. McCulloch, and H.E. ter Keurs. Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol, 69(2–3):289–331, 1998.

    Article  Google Scholar 

  14. P.M. Janssen and W.C. Hunter. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am J Physiol, 269(2 Pt 2):H676–H685, 1995.

    Google Scholar 

  15. R.B. King, J.B. Bassingthwaighte, J.R. Hales, and L.B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res, 57(2):285–295, 1985.

    Google Scholar 

  16. P.M. Nielsen, I.J. Le Grice, B.H. Smaill, and P.J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol, 260(4 Pt 2):H1365–H1378, 1991.

    Google Scholar 

  17. E. Pate and R. Cooke. A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil, 10(3):181–196, 1989.

    Article  Google Scholar 

  18. V.A. Saks, Z.A. Khuchua, E.V. Vasilyeva, O.Y. u. Belikova, and A.V. Kuznetsov. Metabolic compartmentation and substrate channelling in muscle cells. role of coupled creatine kinases in in vivo regulation of cellular respiration-a synthesis. Mol Cell Biochem, 133–134:155–192, 1994.

    Google Scholar 

  19. U. Schwanke, S. Cleveland, E. Gams, and J.D. Schipke. Correlation between heterogeneous myocardial flow and oxidative metabolism in normoxic and stunned myocardium. Basic Res Cardiol, 96(6):557–563, 2001.

    Article  Google Scholar 

  20. D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of physiology — The cardiovascular system I, pages 61–122. Am. Physiol. Soc., Bethesda, MD, 1979.

    Google Scholar 

  21. H. Suga. Ventricular energetics. Physiol Rev, 70(2):247–277, 1990.

    Google Scholar 

  22. T.W. Taylor, Y. Goto, K. Hata, T. Takasago, A. Saeki, T. Nishioka, and H. Suga. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model. J Biomech, 26(10):1217–1225, 1993.

    Article  Google Scholar 

  23. T.W. Taylor, Y. Goto, and H. Suga. Variable cross-bridge cycling-ATP coupling accounts for cardiac mechanoenergetics. Am J Physiol, 264(3 Pt 2):H994–1004, 1993.

    Google Scholar 

  24. R. van Heuningen, W.H. Rijnsburger, and H.E. ter Keurs. Sarcomere length control in striated muscle. Am J Physiol, 242(3):H411–H420, 1982.

    Google Scholar 

  25. M. Vendelin, P.H. Bovendeerd, J. Engelbrecht, and T. Arts. Optimizing ventricular fibers: uniform strain or stress, but not atp consumption, leads to high efficiency. Am J Physiol Heart Circ Physiol, 283(3): H1072–H1081, 2002.

    Google Scholar 

  26. M. Vendelin, P.H.M. Bovendeerd, T. Arts, J. Engelbrecht, and D.H. van Campen. Cardiac mechanoenergetics replicated by cross-bridge model. Ann Biomed Eng, 28(6):629–640, 2000.

    Article  Google Scholar 

  27. M. Vendelin, O. Kongas, and V. Saks. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol, 278(4):C747–C764, 2000.

    Google Scholar 

  28. J.R. Williamson, C. Ford, J. Illingworth, and B. Safer. Coordination of citric acid cycle activity with electron transport flux. Circ. Res., 38(5 Suppl 1):I39–I51, 1976.

    Google Scholar 

  29. A.Y. Wong. Mechanics of cardiac muscle, based on huxley’s model: mathematical stimulation of isometric contraction. J Biomech, 4(6):529–540, 1971.

    Article  Google Scholar 

  30. J. Zhang and K.M. McDonald. Bioenergetic consequences of left ventricular remodeling. Circulation, 92(4):1011–1019, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vendelin, M., Bovendeerd, P.H.M., Saks, V., Engelbrecht, J., Arts, T. (2003). Simulating Cardiac Mechanoenergetics in the Left Ventricle. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics