Abstract
In the design of patient specific mathematical models of cardiac mechanics, the lack of patient specific input data leads to default settings of various model parameters. To estimate the potential errors thus introduced, we evaluated changes in predicted mechanics in a model of the left ventricle (LV) induced by changes in geometry, fiber orientation, heterogeneity of passive material behavior and triaxial active stress development.
Incorporation of measured heterogeneity of passive stiffness did not affect systolic mechanics. Incorporation of triaxial active stress development did significantly affect systolic mechanics, but knowledge on this mechanism is too limited to draw conclusions.
LV geometry variations covering the biological range changed the equatorial distribution of active myofiber stress and shortening by about 10 to 15%. Similar changes were found by variation of fiber orientation by 8° at maximum. Since this change in orientation is at the edge of the accuracy, with which myofiber orientation can be measured in vitro, and far below the accuracy, obtainable for in vivo measurements, we conclude that the benefit of accounting for patient specific geometry is questionable when using experimental data on fiber orientation. We propose to select myofiber orientation such, that myofiber load is distributed homogeneously across the cardiac wall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.M. Abdulla, M.J. Frank, M.I. Canedo, and M.A. Stefadouros. Limitations of echocardiography in the assessment of left ventricular size and function in aortic regurgitation. Circulation, 61:148–155, 1980.
E.A. Bocchi, L.F. Moreira, A.V. de Moraes, G. Bellotti, M. Gama, N.A.G. Stolf, A.D. Jatene, and F. Pileggi. Effects of dynamic cadiomyoplasty on regional wall motion, ejection fraction and geometry of the left ventricle. Circulation, 86,supp II:II231–II235, 1992.
P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. van Campen, and R.S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J Biomech., 25:1129–1140, 1992.
P.H.M. Bovendeerd, J.M. Huyghe, T. Arts, D.H. van Campen, and R.S. Reneman. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech., 27: 941–951, 1994.
L. Geerts, P.H.M. Bovendeerd, K. Nicolay, and T. Arts. Characterization of the normal cardiac myofiber field in goat measured with MR diffusion tensor imaging. Am. J. Physiol., 283, H126–H138, 2002.
J.J. Gomez-Doblas, J. Schor, P. Vignola, D. Weinberg, E. Traad, R. Carrillo, D. Williams, and G.A. Lamas. Left ventricular geometry and operative mortality in patients undergoing mitral valve replacement. Clin Cardiol, 24:717–722, 2001.
J.W. Holmes, D.F. Scollan, and R.L. Winslow. Direct histological validation of diffusion tensor mri in formaldehyde-fixed myocardium. Magn Reson Med., 44:157–161, 2000.
E.W. Hsu, A.L. Muzikant, S.A. Matulevicius, R.C. Penland, and C.S. Henriques. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol., 274:H1627–H1634, 1998.
D.H.S. Lin and F.C.P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng., 120:504–517, 1998.
T. Matsushita, M. Oyamada, K. Fujimoto, Y. Yasuda, S. Masuda, Y. Wada, T. Oka and, T. Takamatsu. Remodeling of cell-cell and cell-extracellular matrix interactions at the borderzone of rat myocardial infarcts. Circ Res., 85:1046–1055, 1999.
V.P. Novak, F.C.P. Yin, and J.D. Humphrey. Regional and mechanical properties of passive myocardium. J Biomech., 27:403–412, 1994.
T.G. Reese, R.M. Weisskoff, R.N. Smith, B.R. Rosen, R.E. Dinsmore, and V.J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med., 34:786–791, 1995.
J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J Biomech., 30:1041–1049, 1997.
J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann Biomed Eng., 27:289–297, 1999.
D.F. Scollan, A. Holmes, R. Winslow, and J. Forder. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol., 275:H2308–H2318, 1998.
D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of physiology — The Cardiovascular system I. American physiological society, 1979.
W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, T.J. Brady, and V.J. Wedeen. Myocardial fiber shortening in humans: Initial results of MR imaging. Radiology, 216:128–139, 2000.
W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, and V.J. Wedeen. Cardiac diffusion tensor MRI in vivo without strain correction. Magn Reson Med., 42:393–403, 1999.
T.P. Usyk, R. Mazhari, and A.D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast., 61:143–164, 2000.
M. Vendelin, P.H.M. Bovendeerd, T. Arts, J. Engelbrecht, and D.H. van Campen. Cardiac mechanoenergetics replicated by cross-bridge model. Ann Biomed Eng., 28:629–640, 2000.
M. Vendelin, P.H.M. Bovendeerd, J. Engelbrecht, and T. Arts. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol., 283:H1072–H1081, 2002.
P.S. Vokonas, R. Gorlin, P.F. Crhon, M.V. Herman, and E.H. Sonnenblick. Dynamic geometry of the left ventricle in mitral regurgitation. Circulation, 48:786–795, 1973.
N. Westerhof, G. Elzinga, and G.C. van den Bos. Influence of central and peripherical changes on the hydraulic input impedance of the systemic arterial tree. Med Biol Eng., 11:710–723, 1973.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geerts, L., Kerckhoffs, R., Bovendeerd, P., Arts, T. (2003). Towards Patient Specific Models of Cardiac Mechanics: A Sensitivity Study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_9
Download citation
DOI: https://doi.org/10.1007/3-540-44883-7_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40262-6
Online ISBN: 978-3-540-44883-9
eBook Packages: Springer Book Archive