Abstract
Strategies for dealing with link failures in computer networks so far have only been discussed in the context of immediate reservations, i.e. reservations made immediately before the requested transmission commences. In contrast, advance reservation mechanisms provide the opportunity to reserve resources a longer time before a transmission starts. In such an environment, the requirement for defining strategies to deal with link failures exists, too. The differences between immediate and advance reservation mechanisms require to apply different and more complex mechanisms in order to implement fault tolerance. In this paper, we discuss the requirements for dealing with link failures in advance reservation environments. Based on these observations, in the second part of the paper strategies for handling link failures are developed and evaluated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Authenrieth and A. Kirstaedter. Engineering End-to-End IP Resilience Using Resilience-Differentiated QoS. IEEE Communications Magazine, 1(1):50–57, January 2002.
L.-O. Burchard. Source Routing Algorithms for Advance Reservation Mechanisms. Technical Report 2003-3, Technische Universitaet Berlin, 2003. ISSN 1436-9915.
L.-O. Burchard and H.-U. Heiss. Performance Evaluation of Data Structures for Admission Control in Bandwidth Brokers. In Proceedings of the Intl. Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2002.
L.-O. Burchard and R. Lüling. An Architecture for a Scalable Video-on-Demand Server Network with Quality-of-Service Guarantees. In Proceedings of the 5th Intl. Workshop on Distributed Multimedia Systems and Applications (IDMS), Lecture Notes in Computer Science, Springer, volume 1905, pages 132–143, 2000.
D. Eppstein. Finding the k Shortest Paths. SIAM Journal on Computing, 28(2), 1998.
D. Ferrari, A. Gupta, and G. Ventre. Distributed Advance Reservation of Real-Time Connections. In Network and Operating System Support for Digital Audio and Video, pages 16–27, 1995.
I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Distributed Resource Management Architecture that Supports Advance Reservations and Co-Allocation. In Proceedings of the 7th International Workshop on Quality of Service (IWQoS), 1999.
S. Lee and M. Gerla. Fault-Tolerance and Load Balancing in QoS Provisioning with Multiple MPLS Paths. In Proceedings of IFIP Ninth International Workshop on Quality of Service (IWQoS), 2001.
E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture. ftp://ftp.isi.edu/in-notes/rfc3031.txt, January 2001. RFC 3031.
A. Schill, F. Breiter, and S. Kuhn. Design and evaluation of an advance reservation protocol on top of RSVP. In 4th International Conference Broadband Communications, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burchard, LO., Droste-Franke, M. (2003). Fault Tolerance in Networks with an Advance Reservation Service. In: Jeffay, K., Stoica, I., Wehrle, K. (eds) Quality of Service — IWQoS 2003. IWQoS 2003. Lecture Notes in Computer Science, vol 2707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44884-5_12
Download citation
DOI: https://doi.org/10.1007/3-540-44884-5_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40281-7
Online ISBN: 978-3-540-44884-6
eBook Packages: Springer Book Archive