Skip to main content

Routing and Grooming in Two-Tier Survivable Optical Mesh Networks

  • Conference paper
  • First Online:
Quality of Service — IWQoS 2003 (IWQoS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2707))

Included in the following conference series:

Abstract

While deploying the next generation of optical networks with a mesh topology, telecommunications carriers are being confronted with a choice between wavelength switches that can switch traffic at SONET STS-48 (2.5 Gbps) granularity and sub-wavelength grooming capable switches that can switch at STS-1 (51 Mbps) granularity. The former cannot switch circuits of capacity lower than STS-48 without the help of external grooming devices, and consumes high fragmented/unused capacity to support low capacity end to end circuits using high capacity STS-48 channels. The latter almost eliminates such capacity wastage by supporting STS-1 level switching, but involves larger switching delays leading to slower restoration and requires more complicated hardware design that decreases switch scalability with increasing port count.

This paper proposes an intelligent packing and routing algorithm in a network architecture which contains both kinds of switches configured in two tiers, and compares it with the other two network architectures - one with only wavelength switches with STS-48 granularity, and another with only grooming switches with STS-1 switching granularity. It is shown that the two-tier architecture with our routing scheme is comparable in capacity efficiency to the STS-1 only network, while its scalability and restoration delays are at par with the STS-48 only network.

Furthermore, we propose a partial two-tier network architecture where the functionality of STS-1 grooming is deployed at a subset of the network nodes. Our simulations show that the capacity efficiency of this architecture does not decrease significantly with reduction in the number of STS-1 switch equipped nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Internet Traffic Soars, But Revenues Glide. RHK Inc. Industry Report, May 2002.

    Google Scholar 

  2. T. E. Stern and K. Bala. Multiwavelength Optical Networks: A Layered Approach. Prentice Hall, May 1999.

    Google Scholar 

  3. G. Mohan and C. Siva Ram Murthy. Lightpath Restoration in WDM Optical Mesh Networks. IEEE Network Magazine, Vol.14, No.6, November/December 2000.

    Google Scholar 

  4. Sudipta Sengupta and Ramu Ramamurthy. From Network Design to Dynamic Provisioning and Restoration in Optical Cross-Connect Mesh Networks: An Architectural and Algorithmic Overview. IEEE Network Magazine, Vol. 15, No. 4, July/August 2001.

    Google Scholar 

  5. AT&T Points the Way to Intelligent Optical Networking. Business Week 2001 Special Section on The Future of Broadband. http://www.businessweek.com/adsections/broadband/innovation/publicnet/nec.htm.

    Google Scholar 

  6. J. Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17, No. 11, July 1971.

    Google Scholar 

  7. B. T. Doshi, S. Dravida, P. Harshavardhana, O. Hauser and Y. Wang. Optical Network Design and Restoration. Bell Labs Technical Journal, Vol. 4, No. 1, Jan-Mar 1999.

    Google Scholar 

  8. Ramu Ramamurthy, et al. Capacity Performance of Dynamic Provisioning in Optical Networks. IEEE Journal of Lightwave Technology, Vol. 19, No. 1, January 2001.

    Google Scholar 

  9. Somdip Datta, Sudipta Sengupta, Subir Biswas and Samir Datta. Efficient Channel Reservation for Backups Paths in Optical Mesh Networks. IEEE Globecom 2001, November 2001, San Antonio, TX.

    Google Scholar 

  10. Somdip Datta, Sudipta Sengupta, Subir Biswas, Debanjan Saha and Hisashi Kobayashi. Analysis of Sub-wavelength Traffic Grooming Efficiency in Optical Mesh Networks. Submitted for publication.

    Google Scholar 

  11. Chunsheng Xin, Yinghua Ye, Sudhir Dixit and Chunming Qiao. A Joint Working and Protection Path Selection Approach in WDM Mesh Networks. IEEE Globecom 2001, November 2001, San Antonio, TX.

    Google Scholar 

  12. Sudipta Sengupta and Ramu Ramamurthy. Capacity Efficient Distributed Routing of Mesh-Restored Lightpaths in Optical Networks. IEEE Globecom 2001, November 2001, San Antonio, TX.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Datta, S., Biswas, S., Sengupta, S., Saha, D. (2003). Routing and Grooming in Two-Tier Survivable Optical Mesh Networks. In: Jeffay, K., Stoica, I., Wehrle, K. (eds) Quality of Service — IWQoS 2003. IWQoS 2003. Lecture Notes in Computer Science, vol 2707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44884-5_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44884-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40281-7

  • Online ISBN: 978-3-540-44884-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics