Skip to main content

Learning First-Order Bayesian Networks

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2003)

Abstract

A first-order Bayesian network (FOBN) is an extension of first-order logic in order to cope with uncertainty problems. Therefore, learning an FOBN might be a good idea to build an effective classifier. However, because of a complication of the FOBN, directly learning it from relational data is difficult. This paper proposes another way to learn FOBN classifiers. We adapt Inductive Logic Programming (ILP) and a Bayesian network learner to construct the FOBN. To do this, we propose a feature extraction algorithm to generate the significant parts (features) of ILP rules, and use these features as a main structure of the induced the FOBN. Next, to learn the remaining parts of the FOBN structure and its conditional probability tables by a standard Bayesian network learner, we also propose an efficient propositionalisation algorithm for translating the original data into the single table format. In this work, we provide a preliminary evaluation on the mutagenesis problem, a standard dataset for relational learning problem. The results are compared with the state-of-the-art ILP learner, the PROGOL system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Alphonse and C. Rouveirol. Lazy Propositionalisation for Relational Learning, In Horn dW., editor, Proc. of 14th European Conference on Artificial Intelligence, Berlin, Allemagne, pages 256–260, IOS Press, 2000.

    Google Scholar 

  2. M. Botta and A. Giordana and L. Saitta and M. Sebag. Relational learning: Hard Problems and Phase transition. Selected papers from AIIA’99, Springer-Verlag, 2000.

    Google Scholar 

  3. D. M. Chickering. Learning Bayesian Networks is NP-Complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V, 1996.

    Google Scholar 

  4. D.M. Chickering. The WinMine Toolkit. Technical Report MSR-TR-2002-103, Microsoft, 2002

    Google Scholar 

  5. L. De Raedt. Attribute value learning versus inductive logic programming: The missing links (extended abstract). In D. Page, editor, Proc. of the 8th Int. Conference on Inductive Logic Programming, LNAI 1446, pages 1–8. Springer-Verlag, 1998.

    Google Scholar 

  6. S. Dzeroski. Relational Data Mining Applications: An Overview. Relational Data Mining, S. Dzeroski and N. Lavrac, editors, Springer-Verlag, 2001.

    Google Scholar 

  7. D. Fensel, M. Zickwolff, and M. Weise. Are substitutions the better examples ? In L. De Raedt, editor, Proc. of the 5 th International Workshop on ILP, 1995.

    Google Scholar 

  8. P. A. Flach and N. Lachiche. 1BC: A first-order Bayesian classifier. In S. Dzeroski and P. A. Flach, editors, Proc. of the 9th International Workshop on Inductive Logic Programming, LNAI 1634, pages 92–103. Springer-Verlag, 1999.

    Google Scholar 

  9. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. Relational Data Mining, S. Dzeroski and N. Lavrac, editors, 2001

    Google Scholar 

  10. K. Kersting, L. De Raedt. Basic Principles of Learning Bayesian Logic Programs. Technical Report No. 174, Institute for Computer Science, University of Freiburg, Germany, June 2002

    Google Scholar 

  11. K. Kersting, L. De Raedt. Bayesian Logic Programs. In J. Cussens and A. Frisch, editors, Work-in-Progress Reports of the Tenth International Conference on Inductive Logic Programming (ILP-2000), London, U. K., 2000.

    Google Scholar 

  12. B. Kijsirikul, S. Sinthupinyo, and K. Chongkasemwongse. Approximate Match of Rules Using Backpropagation Neural Networks. Machine Learning Journal, Volume 44, Issue 3, September, 2001

    Google Scholar 

  13. D. Koller and A. Pfeffer. Object-Oriented Bayesian Networks. Proc. of UAI, 1997.

    Google Scholar 

  14. S. Kramer, N. Lavrac and P. Flach. Propositionalization Approaches to Relational Data Mining, in: Dzeroski S., Lavrac N, editors, Relational Data Mining, 2001.

    Google Scholar 

  15. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York, 1994

    MATH  Google Scholar 

  16. E. McCreath and A. Sharma. ILP with Noise and fixed Example Size: a Bayesian Approach. Proc. of the 15th International Joint Conference on Artificial Intelligence IJCAI), Nagoya, Japan, August 1997

    Google Scholar 

  17. S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and Methods. Journal of Logic Programming, 12:1–80, 1994.

    MathSciNet  MATH  Google Scholar 

  18. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming, 13(3–4):245–286, 1995.

    Article  Google Scholar 

  19. D. Poole. The Independent Choice Logic for modeling multiple agents under uncertainty. Artificial Intelligence, 94(1–2), special issue on economic principles of multi-agent systems: 7–56, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. H. Rosen. Discrete Mathematics and its Applications. 4th Edition, Mcgraw-Hill, 1998.

    Google Scholar 

  21. M. Sebag and C. Rouveirol. Constraint Inductive Logic Programming. In L. De Raedt, editor, Advances in Inductive Logic Programming, 277–294, IOS-Press, 1996.

    Google Scholar 

  22. Srinivasan and R.D. King. Feature construction with Inductive Logic Programming: a study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery, 3(1): 37–57, 1999

    Article  Google Scholar 

  23. Srinivasan, R.D. King, and S. Muggleton. The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program. Technical Report PRG-TR-08-99, Oxford University Computing Laboratory, Oxford, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatpatanasiri, R., Kijsirikul, B. (2003). Learning First-Order Bayesian Networks. In: Xiang, Y., Chaib-draa, B. (eds) Advances in Artificial Intelligence. Canadian AI 2003. Lecture Notes in Computer Science, vol 2671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44886-1_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44886-1_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40300-5

  • Online ISBN: 978-3-540-44886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics