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Abstract. Recent work in P2P overlay networks allow for decentralized object
location and routing (DOLR) across networks based on unique IDs. In this paper,
we propose an extension to DOLR systems to publish objects using generic feature
vectors instead of content-hashed GUIDs, which enables the systems to locate
similar objects. We discuss the design of a distributed text similarity engine, named
Approximate Text Addressing (ATA), built on top of this extension that locates
objects by their text descriptions. We then outline the design and implementation
of a motivating application on ATA, a decentralized spam-“ltering service. We
evaluate this system with 30,000 real spam email messages and 10,000 non-spam
messages, and “nd a spam identi“cation ratio of over 97% with zero false positives.

Keywords: Peer-to-peer, DOLR,Tapestry, spam “ltering, approximate text match-
ing

1 Introduction

Recent work on structured P2P overlay networks ([5,18], [15], [11], [10]) utilize scalable
routing tables to map unique identi“ers to network locations, providing interfaces such as
Decentralized Object Location and Routing (DOLR) and Distributed Hashtables (DHT).
They allow network applications such as distributed “le systems and distributed web
caches to ef“ciently locate and manage object replicas across a wide-area network.

While these systems excel at locating objects and object replicas, they rely on known
Globally Unique IDenti“ers (GUID) for each object, commonly generated by applying
a secure hash function to the object content. This provides a highly speci“c naming
scheme, however, and does not lend itself to object location and management based on
semantic features.

To address this problem, we propose an approximate location extension to DOLR
systems to publish and locate objects using generic feature vectors composed of a num-
ber of values generated from its description or content. Any object can be addressed
by a feature vector matching a minimal threshold number of entries with its original
feature vector. Based on this extension, we propose an Approximate Text Addressing
(ATA) facility, which instantiates the approximate location extension by using block
text “ngerprints as features to “nd matches between highly similar text documents. To
validate the ATA design as well as the approximate object location extension, we design
a decentralized spam-“ltering application that leverages ATA to accurately identify junk
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email messages despite formatting differences and evasion efforts by spammers. We
evaluate the accuracy of our “ngerprint vector scheme via simulation and analysis on
real email data, and explore the trade-offs between resource consumption and search
accuracy.

The rest of this paper is as follows: Section 2 brie”y describes existing work in P2P
overlays. Section 3 presents our approximation extension to DOLR systems and a proto-
type implementation. Section 4 describes the design of ATA and Section 5 discusses the
design of the decentralized spam “lter. Section 6 presents simulation and experimental
results, followed by a discussion of related work in Section 7 and status and future work
in Section 8. Finally, we provide a mathematical analysis of the robustness of text-based
“ngerprinting in Appendix A.

2 Background: Structured P2P Overlays

In this section, we “rst present background material on structured P2P overlays. Different
protocols differ in semantics details and performance objectives. While we present our
work in the context of Tapestry for performance reasons, our design is general, and our
results can be generalized to most structured P2P protocols.

2.1 Routing

Tapestry is an overlay location and routing layer “rst presented in [18], with a rigorous
treatment of dynamic algorithms presented in [5]. Like other structured P2P protocols,
object and node IDs are pseudo-randomly chosen from the namespace of “xed-length
bit sequences with a common base (e.g. Hex). Tapestry uses local routing tables at each
node to route messages incrementally to the destination ID digit by digit (e.g., 4***=⇒
45** =⇒ 459* =⇒ 4598 where *•s represent wildcards). A node N has a neighbor
map with multiple levels, where each level represents a matching pre“x up to a digit
position in the ID. Each level of the neighbor map contains a number of entries equal to
the base of the ID, where the ith entry in the jth level is the location of the node closest
in network latency that begins with prefixj−1(N) + i.

To forward on a message from its nth hop router, Tapestry examines its n + 1th

level routing table and forwards the message to the link corresponding to the n + 1th

digit in the destination ID. This routing substrate provides ef“cient location-independent
routing within a logarithmic number of hops and using compact routing tables. Figure 1
shows a Tapestry routing mesh.

2.2 Data Location

In Tapestry, a server S makes a local object O available to others by routing a •publishŽ
message to the object•s •root node,Ž the live node O•s identi“er maps to. At each hop
along the path, a location mapping from O to S is stored. Mappings for multiple replicas
are stored sorted according to distance from the local node. See Figure 2 for an example
of object publication. Here two replicas of the same object are published. A client routes
a query message towards the root node. The message queries each hop router along the
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Fig. 1. Tapestry routing example. Path taken by a message from node 5230 for node 8954 in
Tapestry using hexadecimal digits of length 4 (65536 nodes in namespace).
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Fig. 2. Publication in Tapestry. To publish ob-
ject 4378, server 39AA sends publication re-
quest towards root, leaving a pointer at each
hop. Server 4228 publishes its replica simi-
larly. Since no 4378 node exists, object 4378
is rooted at node 4377.
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Fig. 3. Object Location in Tapestry: Three dif-
ferent location requests. For instance, to locate
GUID 4378, query source 197E routes to-
wards the root, checking for a pointer at each
step. At node 4361, it encounters a pointer to
server 39AA.

way, and routes towards S when it �nds the O to S location mapping. Note that for
nearby objects, query messages quickly intersect the path taken by publish messages,
resulting in quick search results that exploit locality [18]. See Figure 3 for an example of
object location. Notice how locality is exploited by directing location requests to nearby
replicas.

3 Approximate DOLR

DOLR systems like Tapestry provide deterministic, scalable, and ef�cient location and
routing services, making them attractive platforms for deploying wide-area network
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applications. Files, in particular, can be located ef“ciently if their canonical name is
known. Previous approaches, however, generate Globally Unique IDenti“ers (GUID)
by a secure hash (e.g. SHA-1) of the content. This approach signi“cantly limits the
usability of the system in scenarios where users do not known exact names of objects,
but rather perform searches based on general characteristics of the system. In particular,
these scenarios might include searches for data that closely approximates, or is similar
to known data with certain properties. Examples might include searching for audio or
video that matches existing works in content features, or searching or lightly modi“ed
replicas of existing data.

3.1 Approximate DOLR Design

Here we propose an extension to DOLR, Approximate DOLR, as a generic framework
to address some of the needs of these applications. In an ADOLR system, we apply
application-speci“c analysis to given objects to generate feature vectors that describe
its distinctive features, and provide a translation mechanism between these application-
driven features and a traditional GUID obtained from a secure content hash of the object
contents.

This query ability on features applies to a variety of contexts. In the world of multi-
media search and retrieval, we can extract application-speci“c characteristics, and hash
those values to generate feature vectors. Any combination of “eld to value mappings
can be mapped to a feature vector, given a canonical ordering of those “elds. For ex-
ample, this can be applied to searching for printer drivers given printer features such as
location, manufacturer, and speed. If features are canonically ordered as [location,
manufacturer, speed], then an example feature vector might be [hash(443
Soda), hash(HP), hash(12ppm)].

Each member of the vector, a feature, is an application-speci“c feature encoded
as a hashed identi“er. For each feature f, an object (feature object) is stored within
the network. The feature object is a simple object that stores the list of GUIDs of all
objects whose feature vectors include f. Clients searching for objects with a given feature
set “nds a set of feature objects in the network, each associated with a single feature,
and selects the GUIDs which appear in at least T feature objects, where T is a tunable
threshold parameter used to avoid false positives while maintaining the desired generality
of matches.

The •publicationŽ of an object O in an ADOLR system proceeds as follows. First,
its content-hash derived GUID is “rst published using the underlying P2P DOLR layer.
This assures that any client can route messages to the object given its GUID. Next,
we generate a feature vector for O. For each feature in the vector, we try to locate its
associated feature object. If such an object is already available in the system, we append
the current GUID to that object. Otherwise, we create a new feature object identi“ed by
the feature, and announce its availability into the overlay.

To locate an object in anADOLR system, we “rst retrieve the feature object associated
with each entry of the feature vector. We count the number of distinct feature objects
each unique GUID appears in, and select the GUID(s) that appear in a number greater
than some preset threshold. The GUID(s) are then used to route messages to the desired
object.
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The ADOLR API is as follows:

– PublishApproxObject (FV, GUID). This publishes the mapping between the fea-
ture vector and the GUID in the system. A feature vector is a set of feature values
of the object, whose de“nition is application speci“c. Later, one can use the feature
vector instead of the GUID to search for the object. Notice that PublishApprox-
Object only publishes the mapping from FV to GUID. It does not publish the object
itself, which should be done already using publish primitive of Tapestry when Pub-
lishApproxObject is called.

– UnpublishApproxObject (FV, GUID). This removes the mapping from the FV to
the GUID if this mapping exists in the network, which is the reverse of PublishAp-
proxObject.

– RouteToApproxObject (FV, THRES, MSG). This primitive routes a message to
the location of all objects which overlap with our queried feature vector FV on more
than THRES entries. The basic operations involve for each feature, retrieving a list
of GUIDs that share that feature, doing a frequency count to “lter out GUIDs that
match at least THRES of those features, and “nally routing the payload message
MSG to them. For each object in the system with feature vector FV ∗, the selection
criterion is:

|FV ∗ ⋂
FV | ≥ THRES AND 0 < THRES ≤ |FV |

The location operation is deterministic, which means all existing object IDs matching
the criterion will be located and be sent the payload message. However, it is important
to notice that this does not mean every matching object in the system will receive the
message, because each object ID may correspond to multiple replicas, depending
on the underlying DOLR system. The message will be sent to one replica of each
matching object ID, hopefully a nearby replica if the DOLR utilizes locality.

With this interface, we reduce the problem of locating approximate objects on P2P
systems to “nding a mapping from objects and search criteria to feature vectors. The
mapping should maintain similarity relationships, such that similar objects are mapped to
feature vectors sharing some common entries. We show one example of such a mapping
for text documents in Section 4.

3.2 A Basic ADOLR Prototype on Tapestry

Here we describe an Approximate DOLR prototype that we have implemented on top
of the Tapestry API. The prototype serves as a proof of concept, and is optimized for
simplicity. The prototype also allows us to gain experience into possible optimizations
for performance, robustness and functionality.

The prototype leverages the DOLR interface for publishing and locating objects,
given an associated identi“er. When PublishApproxObject is called on an object O, it
begins by publishing O•s content-hashed object GUID using Tapestry. Then the client
node uses Tapestry to send messages to all feature objects involved. Tapestry routes these
messages to the nodes where these feature objects are stored. These nodes then add the
new object GUID to the list of GUIDs inside the feature object. If any feature object



6 Feng Zhou et al.

Client Node

fv2, fv3}

Look up approximate
object with FV = {fv1,

(2) send msg
to "guid1" ����

����
����
��������
����
����
����

����
����
����
����

DOLR Layer

{guid1}

{guid1, guid4}

{guid2, guid3}

fv1

fv4

fv3

return GUID object set {guid1}

return GUID object set {guid1, guid4}

(1) look up fv1

(1) look up fv2
(1) look up fv3

"LocationFailure" msg

Object Node X

Object Node Y

Fig. 4. Location of an approximate object. Client node wants to send a message to all objects with
at least 2 feature in {fv1, fv2, fv3}. It “rst sends lookup message to feature fv1, fv2 and
fv3. fv2 does not exists. A Location Failure message is sent back. fv1 is managed by
object node X. It sends back a list of IDs of all objects having feature fv1, which is {guid1}.
Similar operation is done for feature fv3, whose IDs list {guid1, guid4}. Client node counts
the occurrence of all IDs in all lists and “nds out guid1 to be the ID it is looking for. It then
sends the payload message to object guid1 using Tapestry location message.

is not found in the network, the client node receives a LocationFailure message,
creates a new feature object containing the new object, and publishes it.

For the RouteToApproxObject call, the client node “rst uses Tapestry location
to send messages to all feature objects, asking for a list of IDs associated with each
feature value. Nodes where these feature objects reside receive these messages, do the
lookup in their maps and send back the result. LocationFailure messages are sent back
for nonexistent feature objects, and are counted as an empty ID list. The client node
counts the occurrence of each GUID in the resulting lists. GUIDs with less than the
threshold number of counts are removed. Finally, the message in this call is sent to
the remaining object GUIDs An example of executing a RouteToApproxObject call is
shown in Figure 4.

Note that an analogous system can be implemented on top of a distributed hash
table (DHT) abstraction on P2P systems. Instead of routing messages to previously
published feature objects, one would retrieve each feature object by doing a get operation,
appending the new GUID, and putting the object back using put.

3.3 Optimizing ADOLR Location

Our initial description of the RouteToApproxObject operation involves several round-
trips from the client node to nodes where the feature objects are stored. We propose two
optimizations here that eliminates a network round-trip, reducing overall latency to that
of a normal RouteToObject in a DOLR system at the cost of keeping a small amount of
state on overlay nodes. The “rst optimization involves a client node caching the result
of translating a feature vector to a GUID. now all future messages to the same feature
vector are routing to the cached GUID.
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Fig. 5. Optimized ADOLR location. Client node wants to route a message to a feature vector
{fv1, fv2, fv3, fv4}. It sends message to each identi“er fv1, fv2, fv3, fv4. fv2
doesn•t exist, so no object node receives this message. When object node X receives the messages
to fv1, fv3 and fv4, it scans its local storage for all IDs matching fv1, fv3 and fv4, which
is guid1. Then, object node X sends msg to guid1.

The second optimization is more complex, and illustrated in Figure 5. Normally,
the client node retrieves a set of feature objects, counts GUID occurrences locally, then
routes a message to the resulting GUID(s). The intuition here is that if features are
identi“ed as hashed keys with reasonably low collision rates, each feature will likely
only identify a small number (one or two) of objects with that feature. Furthermore,
multiple feature objects are likely to be colocated together along with the object they
identify, because new feature objects are created by the same node where the object is
stored. Another way to look at this is that the feature object is in most cases published
at the same time with the object itself by the same node. This implies we can route the
application-level message to each feature in the feature vector, and expect it to arrive at
the node where the desired object is stored.

The key change here is that any node that is storing a feature object, (a “le providing
a mapping from a feature to all GUIDs that share that feature), also stores the feature
vectors of each of those GUIDs. Routing a message to a feature vector {X, Y, Z} means
sending the message to each identi“er X , Y , and Z. Each message also includes the entire
feature vector we•re querying for. When a node receives such a message, it immediately
scans its local storage for all feature objects matching X , Y , or Z. For each GUID in
these feature objects, the node determines the amount of overlap between its feature
vector and the queried feature vector. If the overlap sati“es the query threshold, the
message is delivered to that GUID•s location.

This implies that any of the query messages contains enough information for a
node to completely evaluate the ADOLR search on local information. If any locally
stored feature objects contain references to matching objects, they can be evaluated
immediately to determine if it satis“es the query. Because each message contains all
necessary information to deliver the payload to the desired GUID, the set of messages
sent to X , Y , and Z provide a level of fault-resilience against message loss. Finally, the
determination of the desired GUID can occur when the “rst message is received, instead
of waiting for all messages to arrive.

The translation from the feature vector to one or more GUIDs occurs in the network,
not the client node. This provides signi“cant communication savings.
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Nodes need to keep more state to support this optimization, however. In addition to
storing feature objects (that keep the mapping between feature values and GUIDs), they
also need to keep track of previously resolved feature vectors in order to drop additional
requests for the same feature vector. This state can be stored on a temporary basis, and
removed after a reasonable period of time (during which any other requests for the same
feature vector should have arrived).

3.4 Concurrent Publication

There is one problem with the PublishApproxObject implementation described above.
The lookup of feature objects and publication of new feature objects are not atomic. This
can result in multiple feature objects for the same feature value being published if more
than one node tries to publish an object with this feature value concurrently.

We propose two solutions. First, we can exploit the fact that every object is mapped to
a unique root node and serialize the publication on the root node. Every node is required
to send a message to the root node of the feature value to obtain a leased lock before
publishing the feature object. After the lock is acquired by the “rst node, other nodes
trying to obtain it will fail, restart the whole process, and “nd the newly published feature
object. This incurs another round-trip communication to the root node.

In a more ef“cient •optimisticŽ way to solve this problem, the client node always
assumes the feature object does not exist in the network. It tries to publish the object
without doing a lookup beforehand. When the publication message travels through the
network, each node checks whether it knows about an already published feature object
with the same feature value. If such an object does exist, some node or at least the root
will know about this. The node who detects this then cancels this publication and sends
an message to the existing feature object to •mergeŽthe new information. This process
is potentially more ef“cient since con”icts should be rare. In general, the operation is
accomplished with a single one-way publication message.

This optimistic approach can easily be implemented on top of DOLRs such as
Tapestry using the recently proposed common upcall interface for peer to peer (P2P)
overlays [2]. This proposed upcall interface allows P2P applications to override local
routing decisions. Speci“cally, a node can •interceptŽ the publication message and han-
dle con”icts as speci“ed above.

4 Approximate Text Addressing

In this section, we present the design for the Approximate Text Addressing facility built
on the Approximate DOLR extension, and discuss design decisions for exploring trade-
offs between computational and bandwidth overhead and accuracy.

4.1 Finding Text Similarity

Our goal is to ef“ciently match documents distributed throughout the network that share
strong similarities in their content. We focus here on highly similar “les, such as modi“ed
email messages, edited documents, or news article published on different web sites.
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Fig. 6. Fingerprint Vector. A “ngerprint vector is generated from the set of checksums of all
substrings of length L, post-processed with sort, selection and reverse operations.

The algorithm is as follows. Given a text document, we use a variant of block text
“ngerprinting “rst introduced in [7] to generate a set of “ngerprints. The “ngerprint
vector of a document is used as its feature vector in publication and location, using the
Approximate DOLR layer.

To calculate a block text “ngerprint vector of size N for a text document, we divide
the document into all possible consecutive substrings of length L. A document of length
n characters will have (n − L + 1) such strings. Calculating checksums of all such
substrings is a fast operation which scales with n. We sort the set of all checksums by
value, select a size N subset with the highest values, and reverse each checksum by digit
(i.e. 123 ⇒ 321). This deterministically selects a random set without biasing the ID for
pre“x or numerical routing.

L is a parameterized constant chosen for each application to tune the granularity
of similarity matches. For example, a size L of 50 might work well for email, where
complete sentences might account for one substring; but less well for source code,
where code fragments are often much longer in length. Figure 6 illustrates the “ngerprint
process. The calculation is not expensive. Our Java prototype has a processing throughput
of > 13MB/s for L = 50 on a 1Ghz PIII laptop.

4.2 Trade-offs

There are obvious trade-offs between network bandwidth used and the accuracy of the
search. First, the greater the number of entries N in a vector, the more accurate the match
(less false-positives), and also the greater number of parallel lookup requests for each
document. Next, the distance each lookup requests travels directly impacts bandwidth
consumption on the overall network. ATA-enabled applications1 can bene“t from ex-
ploiting network-locality by matching against similar documents nearby in the network
via a DOLR/DHT with object location locality such as Tapestry. Finally, a trade-off exists

1 Some example applications include spam “lters, plagiarism detection and news article cluster-
ing.
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between the number of publishers (those who indicate they have a particular document),
and the resources required for a client to “nd a match in their query. Bandwidth and
accuracy can be tuned by placing a Time-to-Live (TTL) “eld on the lookup query, con-
straining the scope of query messages. Clients who fail to “nd a match may publish their
own documents, improving lookup performance for other clients. These are explored in
detail in Section 6.

5 Decentralized Spam Filtering

Spam, or unsolicited email, wastes time and valuable network resources, causing
headaches for network administrators and home users alike. Currently the most widely-
deployed spam “ltering systems scale to a university- or company- wide network, and
use keyword matching or source address matching [13]. Although easy to deploy and
manage, these systems often walk a “ne line between letting spam through and block-
ing legitimate emails. Our observation is that human recognition is the only fool-proof
spam identi“cation tool. Therefore, we propose a decentralized spam “lter that pools
the collective spam recognition results of all readers across a network.

There already exist centralized collaborative spam “ltering systems, such as Spam-
Net [14], which claims to be peer-to-peer but actually uses a Napster-like architecture.
To our knowledge ours is the “rst attempt to build a truly decentralized collaborative
spam “ltering system. Compared to alternative university-wide centralized collaborated
designs, the most important bene“t of our wide-area decentralized design lies in the
fact that the effectiveness of the system grows with the number of its users. In such a
system with huge number of users world-wide, it is highly probable that every spam
email you receive has been received and identi“ed by somebody else before because
of the large number of users. The deterministic behavior of DOLR systems will prove
useful, because when any single peer publishes information about a speci“c email, that
piece of information can be deterministically found by all clients. Therefore we can
expect this system to be more responsive to new spam than systems in which different
nodes publish/exchange spam information at certain intervals, such as [3]. Additionally,
decentralized systems provide higher availability and resilience to failures and attacks
than similar centralized solutions such as SpamNet.

5.1 Basic Operation

The decentralized spam “ltering system consists of two kinds of nodes, user agents
and peers. User agents are extended email client programs that users use. They query
peers when new emails are received and also send user•s feedback regarding whether a
certain email is or is not spam to peers. A peer is a piece of long-running software that
is installed typically on a university, department or company server that speaks to other
peers worldwide and forms a global P2P network.

When an email client receives a message from the server, the user agent extracts the
body of the mail, drops format artifacts like extra spaces and HTML tags, generates a
“ngerprint vector, and sends it to a peer in the DOLR system. The peer in turn queries
the network using the Approximate DOLR API to see if information on the email has
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been published. If a match is found, and it indicates the email is spam, the email will be
“led separately or discarded depending on user preference. Otherwise, the message is
delivered normally. If the user marks a new message as spam, the user agent marks the
document, and tells the peer to publish this information into the network.

5.2 Enhancements and Optimizations

The basic design above allows human identi“cation of spam to quickly propagate across
the network, which allows all users of the system to bene“t from the feedback of a few.
There are several design choices and optimizations which will augment functionality
and reduce resource consumption.

Our “ngerprint vectors make reverse engineering and blocking of unknown emails
very dif“cult. With the basic system, however, attackers can block well known messages
(such as those from group mailing lists). We propose to add a voting scheme on top of
the publish/search model. A count of positive and negative votes is kept by the system,
and each user can set a threshold value for discarding or “ling spam using the count as
a con“dence measure. A central authority controls the assignment and authentication of
user identities. A user agent is required to authenticate itself before being able to vote
for or against an email. Thus we can restrict the number of votes a certain user agent can
perform on a certain email.

Another type of attack is for spammers to “nd arbitrary text segments with checksum
values more likely to be selected by the “ngerprint selection algorithm. By appending
such •preferredŽ segments to their spam emails, spammers can “x the resulting email
“ngerprint vectors to attempt to avoid detection. Note that this attack can only succeed
if a continuous stream of unique text segments are generated and an unique segment is
appended to each spam message. This places a signi“cant computational overhead on the
spammer that scales with the number of spam messages sent. Additionally, mail clients
can choose randomly from a small set of “ngerprint calculation algorithms. Different
“ngerprinting methods can include transforming the text before calculating the check-
sums, changing the checksum method, or changing the “ngerprint selection method. To
circumvent this, the spammer would need to “rst determine the set of “ngerprint algo-
rithms, and then append a set of preferred segments, each segment overcoming a known
selection algorithm. While different “ngerprint algorithms generate distinct spam sig-
natures for the same spam, partitioning the user population and reducing the likelihood
of a match, it also requires signi“cantly more computational overhead to overcome.

Optimizations can be made for centralized mail servers to compute “ngerprint vectors
for all incoming messages. These vectors can be compared locally to identify •popu-
larŽmessages, and lookups performed to determine if they are spam. Additionally, the
server can attach precomputed “ngerprint vectors and/or spam “ltering results as custom
headers to messages, reducing local computation, especially for thin mail clients such
as PDAs.

6 Evaluation

In this section, we use a combination of analysis, experimentation on random documents
and real emails to validate the effectiveness of our design. We look at two aspects
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of “ngerprinting, robustness to changes in content and false positive rates. We also
evaluate “ngerprint routing constrained with time-to-live (TTL) “elds, tuning the trade-
off between accuracy and network bandwidth consumption.

6.1 Fingerprint on Random Text

We begin our evaluation by examining the properties of text “ngerprinting on randomly
generated text. In particular, we examine the effectiveness of “ngerprinting at matching
text after small modi“cations to their originals, and the likelihood of matching unrelated
documents (false positive rate).

Robustness to Changes in Content. We begin by examining the robustness of the “n-
gerprint vector scheme against small changes in a document, by measuring the probabil-
ity a “ngerprint vector stays constant when we modify small portions of the document.
We “x the “ngerprint vector size, and want to measure the robustness against small
changes under different threshold constants (THRES).

In experiments, we take 2 sets of random text documents of size 1KB and 5KB,
which match small- and large-sized spam messages respectively, and calculate their
“ngerprint vectors before and after modifying 10 consecutive bytes. This is similar to
text replacement or mail merge schemes often used to generate differentiated spam. We
measure the probability of at least THRES out of |FV | “ngerprints matching after
modi“cation as a function of threshold (THRES) and the size of the document (1KB
or 5KB). Here, “ngerprint vector size is 10, |FV | = 10. We repeat that experiment
with a modi“cation of 50 consecutive bytes, simulating the replacement of phrases or
sentences and “nally modifying 5 randomly placed words each 5 characters long.

In addition to the simulated experiments, we also developed a simple analytical
model for these changes based on basic combinatorics. We present this model in detail
in Appendix A. For each experiment, we plot analytical results predicted by our model
in addition to the experimental results.

In Figure 7, we show for each scenario experimental results gathered on randomized
text “les, by comparing “ngerprint vectors before and after modi“cations. From Figure 7,
we can see the model in Appendix A predicts our simulation data almost exactly under
all three patterns of modi“cation. More speci“cally, modifying 10 characters in the text
only impacts 1 or 2 “ngerprints out of 10 with a small probability. This means setting any
matching threshold below 8 will guarantee near 100% matching rate. When we increase
the length of the change to 50 characters, the results do not change signi“cantly, and still
guarantee near perfect matching with thresholds below 7. Finally, we note that multiple
small changes (in the third experiment) have the most impact on changing “ngerprint
vectors. Even in this case, setting a threshold value around 5 or less provides a near
perfect matching rate.

Avoiding False Positives. In addition to being robust under modi“cations, we also want
“ngerprint vectors to provide a low rate of false positives (where unrelated documents
generate matching entries in their vectors). In this section, we evaluate “ngerprint vectors
against this metric with simulation on random text documents. In Section 6.2, we present
similar tests on real email messages.
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Fig. 7. Robustness Test (Experimental and Analytical). The probability of correctly recognizing a
document after modi“cation, as a function of threshold. |FV | = 10.

First, we generate 100,000 random text “les and “nd document pairs that match
1 out of 10 “ngerprint entries. This experiment is done for different “le sizes ranging
from 1KB to 64KB. Figure 8 shows the resulting false positive rate versus the “le
size. While the results for one “ngerprint match are already low, they can be made
statistically insigni“cant by increasing the “ngerprint matches threshold (THRESH)
for a •document match.Ž Out of all our tests (5 × 109 pairs for each “le size), less
than 25 pairs of “les (“le size > 32K) matched 2 “ngerprints, no pairs of “les matched
more than 2 “ngerprints. This result, combined with the robustness result, tells us that
on randomized documents, a threshold from 2 to 5 “ngerprints gives us a matching
mechanism that is both near-perfect in terms of robustness against small changes and
absence of false positives.

6.2 Fingerprint on Real Email

We also repeat the experiments in Section 6.1 on real emails. We collected 29996 total
spam email messages fromhttp://www.spamarchive.org. Histogram and CDF
representations of their size distribution are shown in Figure 9.

http://www.spamarchive.org
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Table 1. Robustness Test on Real Spam Emails.
Tested on 3440 modi“ed copies of 39 emails,
5629 copies each. |FV | = 10.

THRES Detected Failed Total Succ. %
3 3356 84 3440 97.56
4 3172 268 3440 92.21
5 2967 473 3440 86.25

Table 2. False Positive Test on Real Spam
Emails. Tested on 9589(normal) ×
14925(spam) pairs. |FV | = 10.

Match FP # of Pairs Probability
1 270 1.89e-6
2 4 2.79e-8

>2 0 0

In order to get an idea of whether small modi“cations on spam email is a common
practice of spammers, we used a variant of our “ngerprint techniques to fully categorize
the email set for uniqueness. We personally con“rmed the results. We found that, out of
all these 29996 junk emails, there are:

– 14925 unique junk emails.
– 9076 modi“ed copies of 4585 unique ones.
– 5630 exact copies of the unique ones.

From statistics above, we can see that about 1/3 junk emails have modi“ed version(s),
despite that we believe the collectors of the archive have already strive to eliminate
duplicates. This means changing each email they sent is really a common technique
used by spammers, either to prevent detection or to misdirect the end user.

We did the robustness test on 3440 modi“ed copies of 39 most •popularŽjunk emails
in the archive, which have 5 − 629 copies each. The standard result is human processed
and made accurate. The “ngerprint vector size is set to 10, |FV | = 10. We vary threshold
of matching “ngerprint from 3 to 5, and collect the detected and failed number. Table 1
shows the successful detection rate with THRES = 3, 4, 5 are satisfying.

For the false positive test, we collect 9589 normal emails, which is compose of
about half from newsgroup posts and half from personal emails of project members.
Before doing the experiment, we expect collisions to be more common, due to the use of
common words and phrases in objects such as emails. We do a full pair-wise “ngerprint
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match (vector size 10) between these 14925 unique spam emails and 9589 legitimate
email messages. Table 2 shows that only 270 non-spam email messages matched some
spam message with 1 out of 10 “ngerprints. If we raise the match threshold T to 2 out of
10 “ngerprints, only 4 matches are found. For match threshold more than 2, no matches
are found. We conclude that false positives for threshold value T > 1 are very rare
(∼ 10−8) even for real text samples.

6.3 Efficient Fingerprint Routing w/ TTLs

We want to explore our “ngerprint routing algorithms in a more realistic context. Specif-
ically, we now consider the additional factor mark rate, which is the portion of all users
in the network that actively report a particular spam. A user who •marksŽ a spam mes-
sage actives publishes this fact, thereby registering that opinion with the network. For
example, a 10% mark rate means that 10% of the user population actively marked the
same message as spam.

To simulate the trade-off between bandwidth usage, •markŽ rate, and search suc-
cess rate, we simulate the searching of randomly generated “ngerprints on transit-stub
networks, and vary the required number of overlay hops to “nd a match, as well as the
mark rate. We assume users marking the spam are randomly distributed. With an ef“cient
DOLR layer, the more users who mark a document as spam, the fewer number of hops
we expect a query to travel before “nding a match. We can set a TTL value on queries
to conserve bandwidth while maintaining a reasonably high search success rate.

We performed experiments on 8 transit stub topologies of 5000 nodes, latency cali-
brated such that the network diameter is 400ms. Each Tapestry network has 4096 nodes,
and each experiment was repeated with 3 randomized overlay node placements. By
aggregating the data from all placements and all topologies, we reduced the standard
deviation below 0.02 (0.01 for most data points).

The results in Figure 10 show the expected latency and success probability for queries
as a function of the number of hops allowed per query (TTL). Since there is a high
correlation between the TTL value and the network distance traveled in ms, we plot both
the TTL used and the associated network distance. For example, we see that queries
with TTL of 2 on these topologies travel a distance of approx. 60ms. Further, at 10%
publication rate, we expect those queries to be successful 75% of the time. We note that
a Time-to-Live value of 3 overlay hops results in a high probability of “nding an existing
document even if it has only been reported by a small portion of the participating nodes
(2-5%).

7 Related Work

There has been a large amount of recent work on structured peer to peer overlays
[18,5,11,15,10,8,4]. Recent work [2] has tried to clarify the interfaces these protocols
export to applications, including distributed hash tables (DHTs) and decentralized ob-
ject location and routing (DOLRs) layers. While our proposal is designed for DOLR
systems, it can also be implemented on top of DHTs with minor modi“cations. Further-
more, protocols like Tapestry that use network proximity metrics to constrain network
traf“c will bene“t the most from our performance optimizations.
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Recent work [6] discusses the feasibility of doing keyword-based web search in
structured P2P networks, which can be thought of as an instantiation of our ADOLR
proposal applied to text documents with keywords used as features. Both their scheme
and our work use inverted indices of keywords/features assigned to different nodes and
maintained using structured overlay location and routing primitives. Finally, this work
tries to gauge feasibility, rather than to propose any speci“c implementation.

In the context of approximate text addressing, centralized text similarity search is
a well-studied problem. Comprehensive discussion can be found in [17]. It includes
discussion about using "n-grams" to do similarity search using exact search facility.
One speci“c technique within this category [7] forms the basis of our approach of using
checksum based “ngerprints.

In [1], Broder examined the probability of two different strings colliding to an iden-
tical single “ngerprint. In contrast, we focus on the collision probability of entire “nger-
print vectors. In Appendix A, we also consider the probability of changes in a “ngerprint
vector under different document modi“cation patterns.

Many spam “ltering schemes have been proposed and some deployed. Schemes
based on hashing and fuzzy hashes [16,14,3], including our proposal, are collaborative
and utilize community consensus to “lter messages. These systems include two main
components: one or more hash functions to generate digests of email messages, and
a repository of all known digests and whether the corresponding emails are spam. Our
system differs from others in this group in that the digest repository is fully decentralized,
and queries are deterministic by default (i.e. all existing results will be found no matter
where it is). This ensures both scalability and accuracy.

Another big family of spam “ltering schemes are machine learning-based [12,9].
These schemes “lter incoming messages based on symptoms or trails of spam emails
identi“ed explicitly or implicitly by the training process. They can be personalized
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according to user preferences and email content and therefore perform well on client
machines. However, because the “lters these systems use are only based on per-user local
information and do not allow cross-user collaboration, they have dif“culty in identifying
new spam emails that are very different from those seen before by the local user.

8 Ongoing and Future Work

We have implemented the basic Approximate DOLR and Approximate Text Address-
ing prototype on a Java implementation of Tapestry, and are exploring additional op-
timizations and extensions. A prototype of the proposed P2P spam “ltering system,
SpamWatch, is implemented and available, including a per-node component imple-
mented as a Tapestry application and the user interface implemented as a Microsoft
Outlook plug-in2. One direction for future work is to deploy SpamWatch as a long-
running service, both to provide a valuable service and also to collect valuable trace
data. We are also considering extending the system to handle predicate queries.

In conclusion, we proposed the design of an approximate location extension to DOLR
systems and described an Approximate Text Addressing facility for text-based objects.
We discuss issues of data consistency and performance optimizations in the system
design, and present a decentralized spam “ltering system as a key application.We validate
our designs via simulation and real data, and show how to tune the “ngerprint vector
size and query TTL to improve accuracy, reduce bandwidth usage and query latency, all
while keeping a low false positive rate.
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A Analysis of Robustness of Text Fingerprinting

Here we give mathematical analysis of how to compute the probability distribution of
number of unchanged “ngerprints of a text document after small modi“cations.

We de“ne:
D : the original document
D′ : the original document after modi“cations
L : the document is divided in consecutive substrings of length L characters
A : the set of checksums calculated from all substrings in D
B : the set of checksums calculated from all substrings in D′
X : A − B, checksums from D which are not present in checksums of D′
Y : B − A, checksums from D′ not present in original checksums of D
FP (A) : the “ngerprint vector generated from checksums of D, such that FP (A) ⊆ A,

|FP (A)| = N
FP (B) : the “ngerprint vector generated from checksums ofD′, such thatFP (B) ⊆ B,

|FP (B)| = N
|S| : if S is a set or vector, |S| represents the size of S
z : |FP (B) − FP (A)|, number of checksums in new “ngerprint vector which are not

in the old “ngerprint vector
Refer to Figure 11 for an illustration of X , Y , A and B.

Let•s de“ne Pr(x) as the probability that x out of N checksums in FP (A) are
obsolete, that is, not in B; de“ne Pr(y) as the probability that y out of N checksums in
FP (B) are newly generated, that is, not in A. We have:

Pr(x) = Pr(|FP (A) ∩ X| = x) =

(
|X|
x

)
×

(
|A| − |X|
N − x

)
(

|A|
N

) (1)

http://www.mozilla.org/mailnews/spam.html
http://spamassassin.org
http://www.cloudmark.com
http://razor.sourceforge.net/
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Pr(y) = Pr(|FP (B) ∩ Y | = y) =

(
|Y |
y

)
×

(
|B| − |Y |
N − y

)
(

|B|
N

) (2)

If:
1. (N − x) + y < N (that is, x > y): FP (B) is composed of (N − x) checksums

from FP (A), y checksums from newly generated set Y , and others from A ∩ B.
That is, the y checksums from Y and others from A ∩ B are the new checksums in
FP (B) since FP (A). Then, z = N − (N − x) = x.

2. (N − x) + y ≥ N (that is, y ≥ x): FP (B) is composed of y checksums from
Y , other checksums from FP (A) − X . That is, the y checksums from Y are new
checksums in FP (B) since FP (A). Then, z = y.

So, when x > y, z = x; when y ≥ x, z = y. That is, z = max(x, y). Then,

Pr(z) = Pr(y = z)
z∑

i=0

Pr(x = i) + Pr(x = z)
z∑

i=0

Pr(y = i) − Pr(x = z)Pr(y = z) (3)

Let•s de“ne P (|FP (A) ∩ FP (B)| ≥ k) to be the probability that at least k checksums are in
common between “ngerprint vector of new document and of old document. We have:

Pr(|FP (A) ∩ FP (B)| ≥ k) = Pr(|FP (B) − FP (A)| ≤ N − k) =
N−k∑
i=0

Pr(z = i) (4)

Knowing of |X| and |Y |, we can apply results in equation (1)-(3) to equation (4), and
then get the probability of the number of unchanged “ngerprints after modi“cation of
the document.
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While |X| and |Y | are related to modi“cation pattern, we can further consider how
to get |X| and |Y |. X =

⋃
Xi and Y =

⋃
Yi, where Xi and Yi are changes made to

checksums because of one modi“cation operation i.
We have three types of operations:

Update d characters : |Xi| = L − 1 + d, |Yi| = L − 1 + d. This is illustrated in
Figure 12.

Insert d characters : |Xi| = L − 1, |Yi| = L − 1 + d. This is illustrated in Figure 13.
Delete d characters : |Xi| = L − 1 + d, |Yi| = L − 1. This is illustrated in Figure 14.
X equals the union of each Xi and Y equals the union of each Yi. So, if there is
only one modi“cation, we can exactly compute |X| and |Y |. If there are more than
one modi“cation, |X| ranges from maxi|Xi| to

∑
i |Xi|, |Y | ranges from maxi|Yi|

to
∑

i |Yi|. We can compute approximate average |X| and |Y | for a speci“c pattern of
modi“cation operations according to equations above.

Thus, we can use equation (4) to compute the probability distribution of number of
unchanged “ngerprints in “ngerprint vector.
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