Skip to main content

Termination and Productivity Checking with Continuous Types

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2701))

Included in the following conference series:

  • 311 Accesses

Abstract

We analyze the interpretation of inductive and coinductive types as sets of strongly normalizing terms and isolate classes of types with certain continuity properties. Our result enables us to relax some side conditions on the shape of recursive definitions which are accepted by the type-based termination calculus of Barthe, Frade, Giménez, Pinto and Uustalu, thus enlarging its expressivity.

Research supported by the Graduiertenkolleg Logik in der Informatik (PhD Program Logic in Computer Science) of the Deutsche Forschungsgemeinschaft (DFG). The author thanks Martin Hofmann and Ralph Matthes for helpful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreas Abel. Specification and verification of a formal system for structurally recursive functions. In TYPES’ 99, vol. 1956 of LNCS, pages 1–20. Springer, 2000.

    Google Scholar 

  2. Andreas Abel. Termination checking with types. Technical Report 0201, Institut für Informatik, Ludwigs-Maximilians-Universität München, 2002.

    Google Scholar 

  3. A. Abel and T. Altenkirch. A predicative strong norm. proof for a λ-calculus with interleaving inductive types. In TYPES’ 99, vol. 1956 of LNCS. Springer, 2000.

    Google Scholar 

  4. Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Journal of Functional Programming, 12(1):1–41, January 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, University of Edinburgh, November 1993.

    Google Scholar 

  6. Roberto M. Amadio and Solange Coupet-Grimal. Analysis of a guard condition in type theory. In FoSSaCS’ 98, volume 1378 of LNCS. Springer, 1998.

    Google Scholar 

  7. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions. Math. Struct. in Comp. Sci., 2002. To appear.

    Google Scholar 

  8. Thierry Coquand. Infinite objects in type theory. In TYPES’ 93, volume 806 of LNCS, pages 62–78. Springer, 1993.

    Google Scholar 

  9. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In TYPES’94, volume 996 of LNCS, pages 39–59. Springer, 1995.

    Google Scholar 

  10. Martin Hofmann. Non strictly positive datatypes for breadth first search. TYPES mailing list, 1993.

    Google Scholar 

  11. John Hughes and Lars Pareto. Recursion and dynamic data-structures in bounded space: Towards embedded ML programming. In ICFP’99, pages 70–81, 1999.

    Google Scholar 

  12. John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized types. In POPL’96, pages 410–423. ACM Press, 1996.

    Google Scholar 

  13. INRIA. The Coq Proof Assistant Reference Manual, version 7.0 edition, April 2001.

    Google Scholar 

  14. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for program termination. In POPL’01. ACM Press, 2001.

    Google Scholar 

  15. David McAllester and Kostas Arkoudas. Walther Recursion. In CADE-13, volume 1104 of LNCS. Springer, 1996.

    Google Scholar 

  16. Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calculus. Annals of Pure and Applied Logic, 51(1–2):159–172, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of Technology, 2000.

    Google Scholar 

  18. Frank Pfenning and Carsten Schürmann. Twelf — a meta-logical framework for deductive systems. In CADE-16, volume 1632 of LNAI. Springer, 1999.

    Google Scholar 

  19. Brigitte Pientka. Termination and reduction checking for higher-order logic programs. In IJCAR 2001, volume 2083 of LNAI, pages 401–415. Springer, 2001.

    MathSciNet  Google Scholar 

  20. Randy Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh, 1994.

    Google Scholar 

  21. Christophe Raffalli. Data types, infinity and equality in System AF2. In CSL’ 93, volume 832 of LNCS, pages 280–294. Springer, 1994.

    Google Scholar 

  22. Alastair J. Telford and David A. Turner. Ensuring streams flow. In AMAST’ 97, volume 1349 of LNCS, pages 509–523. Springer, 1997.

    Google Scholar 

  23. Hongwei Xi. Dependent types for program termination verification. Journal of Higher-Order and Symbolic Computation, 15:91–131, 2002.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, A. (2003). Termination and Productivity Checking with Continuous Types. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44904-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40332-6

  • Online ISBN: 978-3-540-44904-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics