Abstract
We analyze the interpretation of inductive and coinductive types as sets of strongly normalizing terms and isolate classes of types with certain continuity properties. Our result enables us to relax some side conditions on the shape of recursive definitions which are accepted by the type-based termination calculus of Barthe, Frade, Giménez, Pinto and Uustalu, thus enlarging its expressivity.
Research supported by the Graduiertenkolleg Logik in der Informatik (PhD Program Logic in Computer Science) of the Deutsche Forschungsgemeinschaft (DFG). The author thanks Martin Hofmann and Ralph Matthes for helpful discussions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andreas Abel. Specification and verification of a formal system for structurally recursive functions. In TYPES’ 99, vol. 1956 of LNCS, pages 1–20. Springer, 2000.
Andreas Abel. Termination checking with types. Technical Report 0201, Institut für Informatik, Ludwigs-Maximilians-Universität München, 2002.
A. Abel and T. Altenkirch. A predicative strong norm. proof for a λ-calculus with interleaving inductive types. In TYPES’ 99, vol. 1956 of LNCS. Springer, 2000.
Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Journal of Functional Programming, 12(1):1–41, January 2002.
Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, University of Edinburgh, November 1993.
Roberto M. Amadio and Solange Coupet-Grimal. Analysis of a guard condition in type theory. In FoSSaCS’ 98, volume 1378 of LNCS. Springer, 1998.
G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions. Math. Struct. in Comp. Sci., 2002. To appear.
Thierry Coquand. Infinite objects in type theory. In TYPES’ 93, volume 806 of LNCS, pages 62–78. Springer, 1993.
Eduardo Giménez. Codifying guarded definitions with recursive schemes. In TYPES’94, volume 996 of LNCS, pages 39–59. Springer, 1995.
Martin Hofmann. Non strictly positive datatypes for breadth first search. TYPES mailing list, 1993.
John Hughes and Lars Pareto. Recursion and dynamic data-structures in bounded space: Towards embedded ML programming. In ICFP’99, pages 70–81, 1999.
John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized types. In POPL’96, pages 410–423. ACM Press, 1996.
INRIA. The Coq Proof Assistant Reference Manual, version 7.0 edition, April 2001.
Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for program termination. In POPL’01. ACM Press, 2001.
David McAllester and Kostas Arkoudas. Walther Recursion. In CADE-13, volume 1104 of LNCS. Springer, 1996.
Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calculus. Annals of Pure and Applied Logic, 51(1–2):159–172, 1991.
Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of Technology, 2000.
Frank Pfenning and Carsten Schürmann. Twelf — a meta-logical framework for deductive systems. In CADE-16, volume 1632 of LNAI. Springer, 1999.
Brigitte Pientka. Termination and reduction checking for higher-order logic programs. In IJCAR 2001, volume 2083 of LNAI, pages 401–415. Springer, 2001.
Randy Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh, 1994.
Christophe Raffalli. Data types, infinity and equality in System AF2. In CSL’ 93, volume 832 of LNCS, pages 280–294. Springer, 1994.
Alastair J. Telford and David A. Turner. Ensuring streams flow. In AMAST’ 97, volume 1349 of LNCS, pages 509–523. Springer, 1997.
Hongwei Xi. Dependent types for program termination verification. Journal of Higher-Order and Symbolic Computation, 15:91–131, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abel, A. (2003). Termination and Productivity Checking with Continuous Types. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_1
Download citation
DOI: https://doi.org/10.1007/3-540-44904-3_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40332-6
Online ISBN: 978-3-540-44904-1
eBook Packages: Springer Book Archive