Skip to main content

A Fully Abstract Bidomain Model of Unary FPC

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2701))

Included in the following conference series:

Abstract

We present a fully abstract and effectively presentable model of unary FPC (a version of FPC with lifting rather than lifted sums) in a category of bicpos and continuous and stable functions. We show universality for the corresponding model of unary PCF, and then show that this implies full abstraction for unary FPC. We use a translation into this metalanguage to show that the “canonical” bidomain model of the lazy λ-calculus (with seqential convergence testing) is fully abstract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abramsky. The lazy λ-calculus. In D. Turner, editor, Research Topics in Functional Programming, pages 65–117. Addison Wesley, 1990.

    Google Scholar 

  2. S. Abramsky and G. McCusker. Games and full abstraction for the lazy λ-calculus. In Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer Science, pages 234–243. IEEE Computer Society Press, 1995.

    Google Scholar 

  3. S. Abramsky and G. McCusker. Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions. In P.W. O’Hearn and R. Tennent, editors, Algol-like languages. Birkhauser, 1997.

    Google Scholar 

  4. S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy λ-calculus. Information and Computation, 105:159–267, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Abramsky, R. Jagadeesan and P. Malacaria. Full abstraction for PCF. Information and Computation, 163:409–470, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th International Colloquium on Automata, Languages and Programming, number 62 in LNCS, pages 72–89. Springer, 1978.

    Google Scholar 

  7. G. Berry. Modèles complètement adéquats et stables des lambda-calculs typés. PhD thesis, Université Paris 7, 1979.

    Google Scholar 

  8. A. Bucciarelli and T. Ehrhard. A theory of sequentiality. Theoretical Computer Science, 113:273–292, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction. In Proceedings of POPL’ 92, 1992.

    Google Scholar 

  10. R. Cartwright, P.-L. Curien and M. Felleisen. Fully abstract semantics for observably sequential languages. Information and Computation, 1994.

    Google Scholar 

  11. P.-L. Curien. Categorical combinators, sequential algorithms and functional programming. Progress in Theoretical Computer Science series. Birkhauser, 1993.

    Google Scholar 

  12. P.-L. Curien, G. Winskell, and G. Plotkin. Bistructures, bidomains and linear logic. In Milner Festschrift. MIT Press, 1997.

    Google Scholar 

  13. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of the ACM, 22:465–476, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. di Gianantonio. Games semantics for the pure lazy λ-calculus. In S. Abramsky, editor, Proceedings of TLCA’ 01, number 2044 in LNCS. Springer, 2001.

    Google Scholar 

  15. M. Fiore and G. Plotkin. An axiomatisation of compuationally adequate domain thoeretic models of FPC. In Proceedings of LICS’ 94, pages 92–102. IEEE Computer Society Press, 1994.

    Google Scholar 

  16. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III. Information and Computation, 163:285–408, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Laird. Bistability and bisequentiality. Available from the author’s home page, 2002.

    Google Scholar 

  18. R. Loader. Unary PCF is decidable. Theoretical Computer Science, 206, 1998.

    Google Scholar 

  19. R. Loader. Finitary PCF is undecidable. Annals of Pure and Applied Logic, 2000.

    Google Scholar 

  20. J. Longley. The sequentially realizable functionals. Technical Report ECS-LFCS-98-402, LFCS, Univ. of Edinburgh, 1998.

    Google Scholar 

  21. G. McCusker. Games and full abstraction for a functional metalanguage with recursive types. PhD thesis, Imperial College London, 1996.

    Google Scholar 

  22. P.W. O’Hearn and R. Tennent. Kripke logical relations and PCF. Information and Computation, 120(1):107–116, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. M. Pitts. Relational properties of domains. Information and Computation, 127:66–90, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–255, 1977.

    Article  MathSciNet  Google Scholar 

  25. G. Plotkin. Postgraduate lecture notes in advanced domain theory (incorporating the ‘Pisa notes’). Available from http://www.dcs.ed.ac.uk/home/gdp/publications/, 1981.

  26. G. Plotkin. Lectures on predomains and partial functions, 1985. Notes for a course given at the Center for the study of Language and Information, Stanford.

    Google Scholar 

  27. J. Riecke and A. Sandholm. A relational account of call-by-value sequentiality. In Proceedings of the Twelfth Annual Symposium on Logic in Computer Science, LICS’ 97. IEEE Computer Society Press, 1997.

    Google Scholar 

  28. M. Schmidt-Schauß. Decidability of behavioural equivalence in unary PCF. Theoretical Computer Science, 216:363–373, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Smyth and G. Plotkin. The category-theoretic solution of recursive domain equations. SIAM Journal on Computing, 11(4):761–783, 1982.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laird, J. (2003). A Fully Abstract Bidomain Model of Unary FPC. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44904-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40332-6

  • Online ISBN: 978-3-540-44904-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics