
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS - Université de Provence - Université de la Méditerranée

Max-plus quasi-interpretations

Roberto M. Amadio

Rapport/Report 10-2002

10 Décembre, 2002

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1

Max-plus quasi-interpretations

Roberto M. Amadio

Laboratoire d’Informatique Fondamentale

UMR 6166
CNRS - Université de Provence - Université de la Méditerranée

CMI, 39 rue Joliot-Curie, F-13453, Marseille, France.

amadio@cmi.univ-mrs.fr

Abstract/Résumé

Quasi-interpretations are a tool to bound the size of the values computed by a first-order functional pro-

gram (or a term rewriting system) and thus a mean to extract bounds on its computational complexity. We

study the synthesis of quasi-interpretations selected in the space of polynomials over the max-plus algebra

determined by the non-negative rationals extended with −∞ and equipped with binary operations for the

maximum and the addition. We prove that in this case the synthesis problem is NP-hard, and in NP for

the particular case of multi-linear quasi-interpretations when programs are specified by rules of bounded size.

The relevance of multi-linear quasi-interpretations is discussed by comparison to certain syntactic and type

theoretic conditions proposed in the literature to control time and space complexity.

Keywords: Functional languages and term rewriting. Function algebras and implicit computational com-

plexity. Static analysis. Polynomial interpretations and max-plus algebras.

Les quasi-interprétations sont un outil pour borner la taille des valeurs calculées par un programme fonc-

tionnel du premier ordre (ou un système de réécriture de termes) et ainsi un moyen pour extraire des bornes

sur sa complexité. Nous étudions la synthése des polynômes sur l’algèbre max-plus determinée par le rationnels

non-negatifs étendus avec −∞. Nous demontrons que dans ce cas le problème de la synthèse est NP-difficile et

dans NP pour le cas particulier des quasi-interpretations multi-linéaires quand les programmes sont specifiés

par des règles de taille bornée. L’intérêt des quasi-interprétation multi-linéaires est discuté par comparaison

à certaines restrictions syntaxiques et de typage proposées dans la litterature pour contrôler la complexité en

temps et en espace.

Mots clefs : Langages fonctionnels et réécriture de termes. Algèbres de fonctions et complexité implicite.

Analyse statique. Interprétations polynômiales et algèbre max-plus.

Relecteurs/Reviewers: Silvano Dal Zilio, Denis Lugiez.

Notes: This work was done while on leave at the Ludwig-Maximilian Universität München and was par-

tially supported by the IST-Global Computing Mobile Resource Guarantee Project and the Action Spécifique

Méthodes formelles pour la mobilité. The author benefitted from a number of discussions with Martin Hof-

mann.

2

1 Introduction

1.1 Motivations

The extraction of complexity bounds from first-order functional programs has a long history
and a variety of motivations. In a fundamental perspective one is interested in providing
functional algebras characterizations of small complexity classes (see [Clo95] for a survey).
Cobham’s characterization of polynomial time by bounded recursion on notation [Cob65] is
an early example. Descriptive complexity theory [Imm99] is a related thread of work relying
on the tools of finite model theory and the ideas of logic programming.

In a more applied perspective, one is interested in estimating the resources required by a
program for its execution. This is particularly interesting in the framework of mobile and/or
embedded code. A popular implementation schema called proof-carrying code [Nec97] requires
the mobile code to come with a proof of its compliance to a particular security policy. This
proof must be generated by the producer of the code and must be easily checkable by the
user of the code. One of the requirements for this implementation schema to be effective is
that the proof of compliance must be generated in an automatic or quasi-automatic way. It
seems clear that it is easier to generate such proofs when the code is expressed in a high-level
language rather than in a low level machine language (see, e.g., [San01] for an elaboration of
this point).

1.2 Technical approaches

Cobham’s characterization of polynomial time functions is based on definitions by primitive
recursion on binary notation where the size of the result of the defined function is explicitly
bounded by a polynomial. From a programming point of view, the annoying aspect of bounded
recursion on notation is that the programmer has to find the bound while defining functions
by primitive recursion. In other terms, bounded recursion on notation does not offer much
support for automatically finding this bound and moreover imposes the use of primitive
recursion.

Some years ago, Bellantoni-Cook [BC92] and Leivant [Lei94] have introduced a notion of
ramification. In [BC92] this is expressed as a distinction between normal and safe arguments
and a restriction on the way primitive recursion can be applied and functions composed
([Lei94] introduces a related notion of tier). By complying to this programming discipline
the programmer is relieved from the problem of explicitly providing a bound. This bound
is implicit in the constraints imposed by ramification and when needed can be explicitly
computed.

It has been observed [Cas97] that this programming discipline rules out many natural
algorithms. To improve the situation, one approach, followed by Marion et al. [Mar00,
MM00, BMM01] has been to extend the notion of ramification to various types of recursive
path orders (a family of simplification ordering such as lexicographic, multi-set,. . .). In a quite
different direction, Jones [Jon97] and Hofmann [Hof02] have proposed to consider general
recursive programs for which a bound can be found on the size of the values handled during
the computation. Jones obtains this bound by imposing a (quite severe) syntactic restriction
on the programs, while Hofmann introduces a ‘linear’ type system with a resource type that
guarantees that values obtained in the course of the computation are non-size increasing.

3

1.3 Quasi-interpretations

Quasi-interpretations have been proposed by Marion et al. in the context of the work on
ramified recursive path orders we mentioned above. More precisely, quasi-interpretations are
extracted from a termination proof in the ramified path order and they are then used as
a tool to bound the space required to compute the result of the program. Alternatively,
quasi-interpretations have been considered in combination with recursive path orderings (see
section 6.3).

Quasi-interpretations are obviously inspired by polynomial simplification interpretations
which are one of the traditional tools used in proving the termination of term rewriting
systems (TRS), see, e.g., [BN98]. The limit of (quasi-)interpretations is that first, one has
to synthesize one, and second, one has to verify that the interpretation fits a given TRS. We
recall that for polynomial interpretations over natural numbers the verification problem is
already undecidable as a consequence of the undecidability of Hilbert’s 10th problem. When
working over the reals the situation improves a bit since both the verification and the synthesis
up to a given degree of polynomials are decidable by appeal to Tarski’s decision procedure
which has however a high complexity.

1.4 Contribution

In this paper we address the problem of the automatic synthesis of quasi-interpretations for
general recursive programs (and not just those admitting a termination proof by ramified
path order). For the efficiency reasons mentioned above, we propose to restrict our attention
to multi-variate polynomials over the so called max-plus algebra [BCOQ92]. We anticipate
that polynomials over the max-plus algebra have a growth rate that is linear in the size
of the argument. This growth rate is indeed a very severe restriction if we think in terms
of traditional interpretations, i.e., of the –time– taken by the computation to terminate.
However, as pointed out above we are interested in quasi-interpretations as a mean to bound
the –space– needed to compute a function. In particular, following Hofmann’s work on type
systems ensuring non-size increasing computations [Hof00], one can still accommodate within
this framework all functions computable in exponential time whose output’s size is bounded
by the input’s size; this is a respectable class of functions including for instance all decision
problems decidable in time 2O(n).

We propose to study the synthesis of quasi-interpretations selected in the space of polyno-
mials over the max-plus algebra determined by the non-negative rationals extended with −∞
and equipped with binary operations for the maximum and the addition. We prove that in
this case the synthesis problem is NP-hard and in NP for the particular case of multi-linear
quasi-interpretations when the size of the rules is bound by a constant (section 5).

We also relate multi-linear quasi-interpretations to certain syntactic and type-theoretic
restrictions that have been proposed in the literature [Jon97, Hof02] in order to limit the
computational complexity of the functions represented by a first-order functional language
(section 6).

1.5 Related work

The idea of using Pressburger arithmetic over natural numbers occurs in the framework of
sized types [HPS96, Par00]. In that context functions definitions are explicitly annotated
with a function over natural numbers which is essentially a term of Pressburger arithmetic

4

with successor and addition (the max operator is not considered). In our terminology, this
means that what is addressed is a verification/type-checking problem. By contrast, we are
interested in the synthesis/type-inference of a quasi-interpretation and look for (relatively)
efficient methods.

In a recent work Hofmann and Jost [HJ03] propose to annotate typing judgments of a first-
order functional language in order to infer bounds on the size of the ‘heap’ memory necessary
to the evaluation of expressions. These annotations have the form x : τ, f ` e : τ ′, g and the
following interpretation: to evaluate e with input value v a heap of size at least f(|v|) (where
|v| is the size of the value) is required and if the evaluation terminates with a value v ′ then
a heap of size at least g(|v′|) is available. This work refers to a specific evaluation strategy
in which roughly heap memory is required to introduce a new constructor and heap memory
is released when performing pattern matching. A method relying on linear programming
is proposed to determine for a given program whether an annotation exists over the space
of (standard) linear affine functions (no max). Quasi-interpretations also offer a bound on
the ‘heap’ memory needed to evaluate a program (cf. theorem 6) but with respect to an
evaluation strategy different from the one considered in [HJ03].

2 A first-order functional language

We consider a first-order, simply typed functional language operating over inductively defined
data types according to a call-by-value evaluation strategy. A program in this context is
given by a collection of data types declarations, a collection of mutually recursive function
definitions’ relying on pattern matching, and a function symbol which is designated as initial.
Following Marion et al., an alternative framework for this study could be term-rewriting rules
with a distinction among constructors and function symbols.1

2.1 Types

The collection of types is the least set such that

µt.(c1 : τ1,1, · · · , τ1,n1 → t, . . . , cm : τm,1, · · · , τm,nm → t)

is a type provided, τi,j is either a type or the bound type variable t, and all constants ci are
distinct and do not occur in previously defined types τi,j. Traditionally, the symbols c1, . . . , cn

are the constructors of the data type. We assume that for a given program, constructors
names are chosen so that no confusion may arise on what type a constructor belongs to.
These types allow for the definition of basic data structures. For instance, we can regard
bool ≡ µt.(tt : t,ff : t) as the type of booleans, tnat ≡ µt.(0 : t, s : t → t) as the type of
tally natural numbers, and tnatlist ≡ µt.(nil : t, cons : tnat , t → t) as the type of lists of tally
natural numbers.

2.2 Expressions

We reserve: c, c′, . . . for constructor symbols, f, f ′, . . . for function symbols, and x, x′ . . . for
first-order variables. Moreover, we introduce the syntactic categories of values, patterns, and

1In this perspective, note that we work with orthogonal TRS and that for these TRS termination is equiv-
alent to innermost termination [Gra96].

5

expressions as follows:

v ::= c(v, . . . , v) (values)
p ::= x || c(p, . . . , p) (patterns)
e ::= x || c(e, . . . , e) || f(e, . . . , e) (expressions).

We denote with Var(e) the collection of variables occurring in the expression e. Note that
values are closed patterns, i.e., Var(v) = ∅, and patterns are expressions without function
symbols.

We denote with [τ/t]τ ′ and [e/x]e′ the substitution in types and expressions, respectively.
A signature Σ attributes to every function symbol f a functional type Σ(f) ≡ τ1, . . . , τn → τ .
As usual if u is either a constructor or a function symbol we denote with arity(u) the number
of expected arguments as specified by its type. A context Γ is a finite list x1 : τ1, . . . , xn : τ
where xi 6= xj if i 6= j. We use the judgment Γ `Σ e : τ to state that the expression e has type
τ with respect to the signature Σ and the context Γ. Provable typing judgment are defined
by the following inference system:

x : τ ∈ Γ

Γ `Σ x : τ

τ ≡ µt.(. . . , c : τ1, . . . , τn → t, . . .) Γ `Σ ei : [τ/t]τi i = 1, . . . , n

Γ `Σ c(e1, . . . , en) : τ

Σ(f) = τ1, . . . , τn → τ Γ `Σ ei : τi i = 1, . . . , n

Γ `Σ f(e1, . . . , en) : τ
.

2.3 Functions’ definitions

Function symbols are defined by a finite system of mutually recursive equations so that each
function symbol is defined by exactly one equation. If Σ(f) = τ1, . . . , τn → τ then the
equation defining f has the shape:

f(x1, . . . , xn) =
x1 = p1,1, . . . , xn = p1,n ⇒ e1

· · ·
x1 = pm,1, . . . , xn = pm,n ⇒ em

where the formal parameters x1, . . . , xn are distinct and

(1) Patterns are linear, i.e. in pi,j no variable occurs more than once and Var(pi,j) ∩
Var(pi,j′) = ∅ if j 6= j ′. We assume that if Var(pi,j) = ∅ then pi,j is a constant constructor.2

In the examples, we take the freedom of omitting trivial patterns of the shape xi = xi.

(2) Patterns do not superpose, i.e., if i 6= j then the set of equations {pi,1 = pj,1, . . . , pi,n =
pj,n} is not unifiable. In particular, this entails that the programs we consider are determin-
istic.

(3) Expressions’ variables are contained in patterns’ variables, i.e., Var(ek) ⊆
⋃

j=1,...,n pk,j.

(4) Patterns and expressions are well typed, i.e., for i = 1, . . . ,m there are contexts Γi such
that:

Γi `Σ pi,j : τj for j = 1, . . . , n and Γi `Σ ei : τ .

We call rule a clause of the shape x1 = p1, . . . , xn = pn ⇒ e.

2This is a technical condition that does not impair the expressivity of the language as general patterns
without free variables can be simulated by introducing auxiliary function symbols.

6

2.4 Evaluation

A program is a finite collection of inductive types and a finite system of functions’ definitions
with a selected main function. Expression evaluation follows a call-by-value strategy which
is specified as follows:

(cst)
ej 7→ vj j = 1, . . . , n

c(e1, . . . , en) 7→ c(v1 . . . , vn)
(fun)

e′j 7→ vj , σpi,j = vj , j = 1, . . . , n σ(ei) 7→ v

f(e′1, . . . , e
′
n) 7→ v

assuming the function f is defined as in section 2.3 and σ denotes a pattern-matching substi-
tution.

3 Quasi-interpretations

In this section we introduce the notion of quasi-interpretation and its basic properties.

Definition 1 (size) The size of a value v is defined by 3

|c(v1, . . . , vn)| =

{

0 if n = 0
1 + Σi=1,...,n|vi| if n > 0 .

Definition 2 (assignment) Given a program, an assignment associates:

(1) To every constructor c with k arguments a function qc : (Q+)k → Q+ such that:

(1.1) qc = 0 if c has arity 0 and

(1.2) qc = d + Σi=1,...,nxi for some d ≥ 1, otherwise.

(2) To every function symbol f with k arguments a function qf : (Q+)k → Q+ such that:

(2.1) qf (n1, . . . , nk) ≥ ni for i = 1, . . . , k and

(2.2) qf (n1, . . . , nk) ≥ qf (m1, . . . ,mk) if ni ≥ mi for i = 1, . . . , k.

Definition 3 (extension of the assignment) Given an assignment and an expression e
with Var (e) = {x1, . . . , xk} we can define a function qe : (Q+)k → Q+ by induction on e as
follows:

qx = x, qc(e1,...,en) = qc(qe1 , . . . , qen), qf(e1,...,en) = qf (qe1 , . . . , qen) .

Definition 4 (quasi-interpretation) Given a program, the related assignment q is a quasi
interpretation if for every function definition of the shape presented in section 2.3 the following
condition holds for i = 1, . . . ,m (where functions are ordered pointwise):

qf (qpi,1 , . . . , qpi,n
) ≥ qei

. (1)

The notion of assignment we consider is obviously inspired by the simplification inter-
pretation method used in termination proofs of TRS. The specific conditions on constructors
correspond to the notion of kind 0 quasi-interpretation presented in [BMM01]. However, we
work over the non-negative rationals rather than over the natural numbers and we force the

3The alternative definition of size where we assign a positive size to constants is equivalent to the present
one within a constant multiplicative factor.

7

interpretation 0 for constants. This last condition allows to simplify some interpretations by
neglecting the space needed to store constant values. It is also instrumental to the simple
form of the satisfaction problem we will derive (cf. remark 12). The following proposition
summarizes the basic properties of quasi-interpretations (the standard proof is delayed to
appendix B.1).

Proposition 5 Suppose q is a quasi-interpretation for a given program. Then:

(1) There is a constant d such that for any value v, |v| ≤ qv ≤ d|v|.

(2) If e 7→ v then qe ≥ qv ≥ |v|. In particular, if f(v1, . . . , vn) 7→ v then |v| ≤ qf (d|v1|, . . . , d|vn|).

We remark that quasi-interpretations –by themselves– already provide a bound on the
complexity of the program.

Theorem 6 Suppose q is a quasi-interpretation for a given program. Then there is an evalu-
ation strategy that given a function symbol f with arguments v1, . . . , vn returns the value v iff
f(v1, . . . , vn) 7→ v and a special symbol ⊥ otherwise. The procedure runs in time 2O(qf(v1,...,vn)).

The proof (appendix B.2) proceeds by presenting an evaluator that can be run on a bounded
auxiliary push-down machine (APDA) (the bound depending on the quasi-interpretation).
By a well-known result of S. Cook [Coo71], a bounded APDA can be simulated by a Turing
Machine in exponential time using a ‘table’ to store intermediate results.

4 Max-plus polynomials and synthesis problem

We consider the set Q+ ∪ {−∞} equipped with two internal composition laws max and plus
(denoted +) where it is understood that:

max (−∞, x) = max (x,−∞) = x −∞ + x = x + (−∞) = −∞ .

We briefly refer to this structure as Q+
max . We note that Q+

max is a commutative and idem-
potent monoid for max with neutral element −∞ and a commutative monoid for plus with
neutral element 0. Moreover, plus distributes over max : x + max (y, z) = max (x + y, x + z).
In the max-plus literature one regards max as an addition and plus as a multiplication and
therefore the following notation is adopted: x⊕y = max (x, y), x⊗y = x+y. Exponentiation
xα with α ≥ 0 stands for x ⊗ · · · ⊗ x α times and thus corresponds to the product αx in
the usual mathematical notation. Note in particular that x0 = 0. In the following we will
just use quite elementary properties of max-plus algebras and so we find it more convenient
to stick to the usual mathematical notation using max (x, y), x + y, and αx for ‘addition’,
‘multiplication’, and ‘exponentiation’ in the max-plus algebra.

A monomial with coefficient in a ∈ Q+
max and indeterminates x1, . . . , xn can be written as

α1x1 + · · · + αnxn + a (2)

where αi ∈ N. We say that a monomial has degree d if αi ≤ d for i = 1, . . . , n.4 A polynomial
is now written as max i∈Imi where mi are monomials of the type specified above. We say that

4This is a slightly improper terminology; we should say that the monomial restricted to any of its indeter-
minates has degree at most d.

8

a polynomial has degree d if all monomials mi have degree d. A polynomial of degree d with
n indeterminates can be represented as

max I:{1,...,n}→{0,...,d}(I(1)x1 + · · · + I(n)xn + aI) (3)

and it is therefore specified by the (d + 1)n coefficients {aI | I : {1, . . . , n} → {0, . . . , d}}.
An assignment (cf. definition 2) of max-plus polynomials of degree d is determined as

follows:

(1) For every constructor c with positive arity a coefficient ac subject to the constraint ac ≥ 1.

(2) For every function symbol f with n ≥ 1 arguments a set of coefficients {af
I | I :

{1, . . . , n} → {0, . . . , k}} subject to the constraints for i = 1, . . . , n

max{af
I | I(i) ≥ 1} ≥ 0 (4)

This last constraint is necessary and sufficient for the condition (2.1) qf (n1, . . . , nk) ≥ ni

of definition 2 to hold. We note that the following monotonicity condition (2.2) is always
satisfied.

Definition 7 (synthesis problem) Given a program, the synthesis problem amounts to de-
termine whether there is a polynomial max-plus quasi-interpretation.

If the program includes l constructors of positive arity and m functional symbols of arity at
most n an assignment of polynomials of degree at most d is determined by at most l+m(d+1)n

coefficients. The assignment is a quasi-interpretation iff it satisfies the constraints above and
those induced by the condition (1) qf (qpi,1 , . . . , qpi,n

) ≥ qei
.

Some simple instances of max-plus polynomial quasi-interpretations are given in appendix
A. Of course, the rule of the game is to get quasi-interpretations as small as possible and in
this respect the max operator is quite useful. Moreover, in many examples where a variable
occurs several times on the right-hand side, it is simply not possible to find a (max-plus)
quasi-interpretation that does not rely on max. We note that in general the existence of a
polynomial max-plus interpretation of a given degree can be reduced to the validity of an ∃∀
formula in Pressburger arithmetic over Q+

max . This problem can be attacked with tools such
as the omega test [Pug92].

We can also consider a restricted problem where one looks for polynomials over Nmax =
N ∪ {−∞} (with coefficients in Nmax). In this case, the satisfaction of a ∃∀ formulae can
also be attacked with automata theoretic tools (see, e.g., [WB00]). Interestingly, Pressburger
arithmetic over Nmax still has the nice properties of usual Pressburger arithmetic. In partic-
ular, the property that definable sets are semi-linear (or equivalently rational) is preserved
[GR02].

As a lower bound on the complexity of the synthesis problem, we state the following
theorem which is based on a non-trivial reduction from 3-sat (proof in appendix B.3).

Theorem 8 The synthesis problem is NP-hard and it remains so if any combination of the
following restrictions is considered:

(1) Rules of bounded size (for a small bound).

(2) Max-plus polynomials of bounded degree d ≥ 1.

(3) Uniform choice of the coefficients of the constructors: ac = ac′ for all constructors c, c′

of positive arity.

9

5 Synthesis of multi-linear quasi-interpretations

We consider the synthesis problem when the degree is 1. We start by pointing out some
specific properties of this case (section 5.1), then we give effective methods to compute and
compare quasi-interpretations (section 5.2), and finally we show how the generated conditions
can be reduced to linear programming (section 5.3).

5.1 Multi-linear assignments

Following a rather standard terminology, we will refer to monomials (polynomials) of degree
1 as multi-linear monomials (polynomials). We note that a multi-linear polynomial in n
indeterminates is specified by 2n coefficients {aI | I ⊆ {1, . . . , n}} and can be written as
follows:

max I⊆{1,...,n}(Σi∈Ixi + aI) . (5)

Equivalently, if the multi-linear polynomial depends on the variables x1, . . . , xn we will also
write:

maxV ⊆{x1,...,xn}(Σv∈V v + aV) . (6)

Proposition 9 (normal form) For every multi-linear polynomial P (x1, . . . , xn) there is an
equivalent multi-linear polynomial P ′(x1, . . . , xn) with coefficients {a′

I | I ⊆ {1, . . . , n}} satis-
fying the condition

J ⊆ K ⊆ {1, . . . , n} ⇒ a′
J ≥ a′K . (7)

Proof. We define a′
I = max{aJ | I ⊆ J}. Clearly P ≤ P ′ and P ′ satisfies the condition (7).

It remains to prove P ≥ P ′. It is enough to show that for K ⊆ {1, . . . , n}, P (x1, . . . , xn) ≥
Σi∈Kxi+a′K . But a′K = aJo for some Jo ⊇ K and P (x1, . . . , xn) ≥ Σi∈Joxi+a′Jo

≥Σi∈Kxi+a′K .
2

In the following we assume that a program has been fixed and that c1, . . . , cl are the
constructors of positive arity occurring in the program. We say that a multi-linear polynomial
is in normal form if its coefficients satisfy condition (7). For such polynomials condition (4)

on assignments can be reformulated as af

{i} ≥ 0 for every function f with arity(f) = n. Given
a multi-linear assignment we will show that qf(p1,...,pn) is always a multi-linear polynomial; a
property that may fail for a general expression e.

Proposition 10 Let P1 be a multi-linear polynomial and P2 be a polynomial over x1, . . . , xn.
If P1 ≥ P2 then P2 must be multi-linear.

Proof. If P2 is not multi-linear then there is an argument xi such that on entry Xi ≡
(0, . . . , 0, xi, 0 . . . , 0), P2(Xi) ≥ 2xi. On the other hand P1(Xi) = xi + n for some n ∈ Q+

max .
Clearly P1(Xi) ≥ P2(Xi) fails for sufficiently large xi. 2

5.2 Computing multi-linear quasi-interpretations

We explicitly compute the shape of the different polynomials arising from a multi-linear
assignment. The proofs require some involved notation but just rely on elementary arithmetic
considerations and are delayed to appendix B.

10

Proposition 11 (left-hand-side) (1) Suppose q is a multi-linear assignment and p is a
pattern in a function definition then qp is a multi-linear polynomial of the shape

qp = Σv∈Var(p)v + Σj=1,...,lαja
cj (8)

for some αj ∈ N.

(2) Suppose q is a multi-linear assignment and the function f contains the rule x1 =
p1, . . . , xn = pn ⇒ e. Then qf(p1,...,pn) is always a multi-linear function and assuming
qpi

= Σv∈Var(pi)v + Σj=1,...,lαi,ja
cj then the coefficient bV for V ⊆

⋃

i=1,...,n Var(pi) is given
by

bV = af
KV

+ Σj=1,...,l(Σk∈KV
αk,j)a

cj (9)

where KV = {k ∈ {1, . . . , n} | V ∩ Var(pk) 6= ∅}.

Remark 12 It is interesting that the coefficients bV can be expressed without the max op-
eration. Let us see why a weakening of the rules on the patterns compromises this property.
Take f with arity(f) = 2 and consider the pattern x1 = x1, x2 = v for some value v such that
qv > 0. Then the coefficients of the multi-linear polynomial qf(x1, v) are

b∅ = max (af

∅ , a
f

{2} + qv) b{1} = max (af

{1}, a
f

{1,2} + qv)

where by the constraints on the assignments we may assume that af

∅ ≥ af

{1}, a
f

{2} ≥ af

{1,2} and

af

{1}, a
f

{2} ≥ 0. However, these constraints are not sufficiently strong to get rid of the max
operation.

We now turn to the polynomial qe. This polynomial is obtained by arbitrary composition
of multi-linear polynomials and may fail to be multi-linear. However, in this case we know
from propositions 10 and 11(2) that the inequality qf(p1,...,pn) ≥ qe cannot hold. So our next
task is to generate constraints that are necessary and sufficient to guarantee that qe is multi-
linear. To this end, we introduce in figure 1 a little formal system with judgments of the
shape (e, C) where e is an expression and C is a set of constraints on the coefficients of the
functions occurring in e. As usual we introduce a special constraint ⊥ with the hypothesis
that no assignment can satisfy it.

Example 13 For the expression e ≡ f(c(x, y), g(x)) we obtain ` (e, {af
1,2 = −∞}). On the

other hand, for the expression e ≡ c(x, x) we obtain ` (e, {⊥}).

Proposition 14 (right-hand-side) Suppose q is a multi-linear assignment in normal form.

(1) If qei
= maxUi⊆Vi

(Σv∈Ui
v + ai

Ui
), i = 1, . . . , n, are multi-linear polynomials where Vi =

Var(ei) and V =
⋃

i=1,...,n Vi. Then:

(1.1) qc(e1,...,en) is a multi-linear polynomial iff i 6= j implies Vi ∩ Vj = ∅, and in this case the
coefficients bU for U ⊆ V are determined by:

bU = Σi=1,...,nai
U∩Vi

+ ac (10)

(1.2) Whenever qf(e1,...,en) is a multi-linear polynomial the coefficients bU for U ⊆ V are
determined by:

bU = max I⊆{1,...,n},↓I,U⊆
⋃

i∈I Vi
(Σi∈Ia

i
U∩Vi

+ af
I) (11)

where by definition ↓ I if i, j ∈ I and i 6= j implies Vi ∩ Vj = ∅.

(2) If ` (e, C). Then qe is multi-linear iff q satisfies C.

11

(x, ∅)

(ei, Ci), i = 1, . . . , n Var(ei) ∩ Var(ej) = ∅ for all i 6= j
(c(e1, . . . , en),

⋃

i=1,...,n Ci)

(ei, Ci), i = 1, . . . , n Var(ei) ∩ Var(ej) 6= ∅ for some i 6= j
(c(e1, . . . , en),

⋃

i=1,...,n Ci ∪ {⊥})

(ei, Ci), i = 1, . . . , n

(f(e1, . . . , en), {af
i,j = −∞ | i 6= j,Var(ei) ∩ Var(ej) 6= ∅} ∪

⋃

i=1,...,n Ci)

Figure 1: Constraints enforcing multi-linearity of qe

Thus given a rule x1 = p1, . . . , xn = pn ⇒ e and a generic multi-linear assignment q
we determine the conditions under which qe is multi-linear and then formally compute its
coefficients. Next, we have to find necessary and sufficient conditions on the coefficients to
compare multi-linear polynomials.

Example 15 Consider again the expression e ≡ f(c(x, y), g(x)). First of all we note the
following constraints on the coefficients:

af

∅ ≥ af

{1}, a
f

{2} ≥ 0 af

{1,2} = −∞

ag

∅ ≥ ag

{1} ≥ 0 ac ≥ 1

Then we compute qe as follows:

qc(x,y) = ac + x + y

qg(x) = max (ag

∅, a
g

{1} + x)

qf(x1,x2) = max (af

∅ , a
f

{1} + x1, a
f

{2} + x2)

qe = max (af

∅ , a
f

{1} + ac + x + y, af

{2} + max (ag

∅, a
g

{1} + x))

= max (af

∅ , a
g

∅ + af

{2}, a
g

{1} + af

{2} + x, af

{1} + ac + x + y) .

Proposition 16 (comparison) Suppose P1 and P2 are multi-linear polynomials with n in-
determinates and coefficients {aI | I ⊆ {1, . . . , n}} and {bI | I ⊆ {1, . . . , n}}, respectively.
Then

(1) P1 ≥ P2 iff the following condition holds:

max{aK | K ⊇ J} ≥ bJ for all J ⊆ {1, . . . , n} . (12)

(2) If moreover, P1 is in normal form then the condition (12) is equivalent to aJ ≥ bJ for
all J ⊆ {1, . . . , n}.

Remark 17 For max-plus polynomials of degree higher than 1 this simple comparison criteria
fails. For instance, max (2x, 2y) ≥ x + y.

To summarize, we have shown how to generate a system S of inequality constraints on the
coefficients of multi-linear polynomials so that the constraints can be satisfied in Q+

max iff the
corresponding polynomials determine a multi-linear assignment and a quasi-interpretation.

12

5.3 Reduction to linear programming

For programs with rules of bounded size we show that the synthesis problem can be solved in
non-deterministic polynomial time thus matching the lower bound given by theorem 8.

The comparison criteria (12) introduces inequalities of the shape max (A1, . . . , Am) ≥ B,
where Ai are coefficients of the type specified by proposition 11(2) not containing the max
operation. We remove the max by non-deterministically guessing the maximum Ai among
A1, . . . , Am and transforming the inequality into Ai ≥ B. We show next that the resulting
system can be solved in deterministic polynomial time. Thus the quest of synthesis problems
with (deterministic) polynomial time complexity seem to depend crucially on the possibility
of removing the max operation on the left-hand side of the inequalities generated by the
comparison criteria. Some interesting cases where this is actually possible are discussed in
propositions 23 and 25.

We reserve x1, . . . , xn for the variables corresponding to the coefficients af
I or for auxiliary

variables, and y1, . . . , yl for the variables corresponding to the coefficients acj which are all
subject to the constraint y ≥ 1. Let S(~x, ~y) be the system of inequalities over Q+

max that we
have derived for the synthesis problem over multi-linear polynomials after elimination of the
max on the left-hand side.

Proposition 18 (right max-elimination) The system S(~x, ~y) can be transformed in poly-
nomial time into a system S1(~x, ~x′, ~y) over Q+

max with additional auxiliary variables ~x′ such
that:

(1) The inequalities in S1 have one of the following 3 shapes assuming ~x, ~x′ ≡ x1, . . . , xn and
~y ≡ y1, . . . , yl.

(a) x = −∞ provided x ∈ {~x} (b) y ≥ 1 for all y ∈ {~y}

(c) x + Σj=1,...,lαjyj ≥ Σj=1,...,nβjxj + Σj=1,...,lγjyj where: αj , βj , γj ∈ N, x ∈ {~x, ~x′} .

(2) An assignment ρ satisfies S iff for some ~w, ρ[~w/~x′] satisfies S1.

Proof hint. An inequality A ≥ max i∈I(Σj∈Ji
Bi,j + C) can be transformed into

A ≥ x′ x′ ≥ Σj∈Ji
x′

i,j + C for i ∈ I x′
i,j ≥ Bi,j for i ∈ I, j ∈ Ji

where x′, x′
i,j are fresh variables. It can be easily verified that the derived system is satisfiable

iff the initial one is. If Bi,j contains again the max operator then we apply recursively the
transformation to the inequality x′

i,j ≥ Bi,j . 2

Proposition 19 (−∞-elimination) The system S1(~x, ~x′, ~y) over Q+
max obtained in propo-

sition 18 can be transformed in polynomial time into a system S2(~x′′, ~y) over Q+ where (i)
{ ~x′′} ⊂ {~x, ~x′}, (ii) the constraints have the shape (b) and (c) in proposition 18, and assuming
{~z} = {~x, ~x′}\{ ~x′′} an assignment ρ satisfies S1 iff ρ[~−∞/~z] satisfies S2.

Proof hint. We describe the proof strategy in a simplified case. Consider the conjunction
of boolean formulae of the shape

∨

j∈J xj or x ⇒
∨

j∈J xj. Its satisfiability can be decided by
applying the following rules:

S, x, (x ⇒
∨

j∈J xj) → S, x,
∨

j∈J xj

S, x, x ∨
∨

j∈J xj → S, x if J 6= ∅

S, (x ⇒ ⊥), x ∨
∨

j∈J xj → S, (x ⇒ ⊥),
∨

j∈J xj if J 6= ∅

S, x′, (x ⇒ (x′ ∨
∨

j∈J xj)) → S, x′

S, (x′ ⇒ ⊥), (x ⇒ (x′ ∨
∨

j∈J xj)) → S, (x′ ⇒ ⊥), (x ⇒
∨

j∈J xj)

13

where as usual ⊥ stands for the empty disjunction, disjunction is treated as an associative and
commutative operator, and ‘,’ stands for conjunction. These simplification rules obviously
terminate in a system S ′ that is satisfiable iff the original one is. Moreover, if ⊥ /∈ S ′ then
the boolean variables X can be partitioned in three sets X1, X0, X2 where X1 = {x | s ∈ S′}
and X0 = {x | (x ⇒ ⊥) ∈ S ′}. Then a satisfying assignment is obtained by taking ρ(x) = 1
if x ∈ X1 ∪ X2 and ρ(x) = 0 if x ∈ X0. This proof strategy is repeated for the system over
Q+

max where the constraint x = −∞ corresponds to x and the constraint x ≥ 0 to (x ⇒ ⊥).
A proper generalization of the rules above is presented in appendix B.7. 2

Remark 20 (optimality and integer solutions) (1) Once the problem is reduced to lin-
ear programming we may look for a solution which is optimal with respect to a given linear
cost function. For instance, we may minimize the function Σ

x∈{ ~x′′}
x + Σj=1,...,lyj.

(2) The transformations we have presented apply equally well to multi-linear polynomials over
Nmax . It is interesting to note that at the final step we can still rely on linear programming.
Indeed, if the system of inequalities over Q+ admits a solution s = (n1/d1, . . . , nk/dk) then
multiplying s by the least common denominator we obtain a solution in N because of the
particular shape (b) and (c) of the constraints generated by −∞-elimination. As usual, the
rational solutions may provide a better upper bound than the integer ones.

We summarize our analysis for programs whose rules have bounded size. The proof given in
section B.8 also shows that the complexity of the method is exponential in the size of the rule.
This is not surprising since the number of coefficients we have to determine is exponential in
the number of variables in a rule.

Theorem 21 The synthesis problem over multi-linear polynomials for programs with rules
of bounded size is NP-complete.

6 Expressivity

We present within our framework a ‘no cons’ syntactic restriction and a ‘type system for
in-place update’ that have been proposed in the literature to control the time and space
complexity. We also mention some upper and lower bounds on the complexity of functions
representable by programs admitting a max-plus quasi-interpretation.

6.1 No cons syntactic condition

Jones’ syntactic condition [Jon97] concerns first-order functional programs defined over the
type of booleans bool ≡ µt.(tt : t,ff : t) and the type of lists of booleans blist ≡ µt.(nil :
t, cons : bool , t → t). The syntactic restriction requires that in a function definition of the
shape presented in section 2.3 the cons constructor does not appear in the expressions ei on
the right-hand side of pattern matching. The following can be easily checked.

Proposition 22 A program conforming to Jones’ restriction admits the following multi-
linear quasi-interpretation assuming arity(c) = arity(f) = n ≥ 1:

qc = 1 + Σi=1,...,nxi qf = max (x1, . . . , xn) .

14

Proof. We have qf(p1,...,pn) = max i=1,...,n(Σv∈Var(pi)v + di) for some di ≥ 0. On the other
hand, if no cons can occur in the expression e then qe = max{v | v ∈ Var(e)} and by definition
of rule, Var(e) ⊆

⋃

i=1,...,n Var (pi). 2

We consider a restricted class of multi-linear quasi-interpretations where:

qc = a + Σi=1,...,nxi, a ≥ 1 qf = max (x1 + af , . . . , xn + af), af ≥ 0, (13)

for arity(f) = arity(c) = n ≥ 1. We note that (i) all constructors have the same coefficient
a, (ii) every function is determined by exactly one coefficient af , and (iii) the interpretation
in proposition 22 falls in this family. We refer to this class of quasi-interpretations as max-
multi-linear.

Proposition 23 The synthesis problem over max-multi-linear interpretations can be solved
in polynomial time.

Proof. It is enough to note that under the conditions (13) the max operation is not needed on
the left-hand side of an inequality. First we note that for a pattern pi, qpi

= αia+Σv∈Var(pi)v
for some αi ∈ N. Thus

qf(p1,...,pn) = max i=1,...,n(af + αia + Σv∈Var(pi)v) .

Now let V ⊆
⋃

i=1,...,n Var(pi).

• If V = ∅ then the comparison condition (12) on the coefficients is expressed as:

max i=1,...,n(af + αia) = af + a(max i=1,...,n(αi)) ≥ b∅

noting that αi are natural numbers and their maximum can be easily determined.

• If ∅ 6= V ⊆ Var(pi) then by the linearity of the patterns i is unique and the comparison
condition (12) on the coefficients is expressed as: af + αia ≥ bV .

• Finally, if V 6⊆ Var(pi) for all i then it must be that −∞ = bV . 2

6.2 Type system for in-place update

Hofmann [Hof00] proposes a first-order functional language that can be compiled into code
not requiring dynamic heap memory allocation. This is achieved by means of an –empty–
‘resource type’ 3 and ‘affine’ typing rules. Elements of resource type have to be understood
as memory cells. Constructors of inductive types require an argument of resource type. Also
functions may take as arguments elements of resource type. We look at a little fragment of
this type system5 composed of programs over the types:

3 ≡ µt.() (resource type)
W ≡ µt.(ε : t, 0 : 3, t → t, 1 : 3, t → t) (binary words).

For every function f we assume Σ(f) has the shape (3, . . . ,3,W, . . . ,W) → W and let r(f) <
arity(f) be the number of arguments of resource type. As usual patterns and expressions in

5In particular, we neglect enumerated, product, and higher-order types.

15

functions’ definitions have to be well typed (cf. section 2.3). This means that assuming
Σ(f) = (τ1, . . . , τn) → W for every rule in the definition of f there is a context Γ such that:

Γ `Σ pi,j : τj for j = 1, . . . , n Γ `Σ ei : W . (14)

Without loss of generality, we may assume that Γ contains only the variables occurring in the
patterns pi,j. Now we say that the typing is affine if in the typing of ei the hypotheses in the
context Γ are used at most once. Note that the typing of the patterns is always affine since
we deal with linear patterns.

Resource arguments can be regarded as annotations for the compiler but no real com-
putation is performed on them. Indeed, it is not even possible to create (closed) values of
resource type. However, there is an obvious way to erase resource arguments and obtain
the ‘intended’ program. In our simple case, the resulting program will operate over the type
w ≡ µt.(ε : t, 0 : t → t, 1 : t → t). The erasure function er is defined as follows over
expressions:

er(x) = x er(ε) = ε er(0(x, e)) = 0(er(e)) er(1(x, e)) = 1(er(e))
er(f(e1, . . . , en)) = f(er(er(f)+1), . . . , er(en)) .

Proposition 24 If a program has an affine typing then its erasure admits the following multi-
linear quasi-interpretation:

q0 = q1 = x + 1, qf = Σi=1,...,nxi + r(f) .

Proof hint. We define a function R on expressions that counts the number of arguments
of resource type:

R(x) = R(ε) = 0, R(0(x, e)) = R(1(x, e)) = 1 + R(e),
R(f(e1, . . . , en)) = r(f) + Σi=1,...,nR(ei) .

The only expressions of resource type that can occur in an expression e on the right hand side
of a rule are the variables of resource type that we find in the pattern. These are the formal
parameters of resource type of the function, say f , plus the variables of resource type arising
in the patterns using the constructors 0 and 1. Thus r(f)+Σi=r(f)+1,...,nR(pi) if arity(f) = n.
Note that this is precisely the coefficient of the polynomial P = qer(f(p1,...,pn)). On the other
hand, let R(Γ) =]{x | x : 3 ∈ Γ} be the number of variables of resource type in a context

Γ. Suppose Γ `af
Σ e is an affine typing of the expression e. Then it can be easily checked by

induction on the typing that qer(e) ≤ d+Σv∈Var (er(e))v for some d ≤ R(Γ). Then the assertion
follows since the context Γ selected in (14) satisfies R(Γ) = r(f) + Σi=r(f)+1,...,nR(pi). 2

We consider a restricted class of multi-linear quasi-interpretations where:

qf = af + Σi=1,...,nxi af ≥ 0 (15)

for arity(f) = n ≥ 1. We note that (i) constructors are subject to the general conditions of
assignments, (ii) every function is determined by exactly one coefficient af , and (iii) the inter-
pretation in proposition 24 falls in this family. We refer to this class of quasi-interpretations
as sum-multi-linear.

Proposition 25 The synthesis problem over sum-multi-linear interpretations can be solved
in polynomial time.

16

Proof. The proof strategy is the same as in proposition 23. Now

qf(p1,...,pn) = af + Σj=1,...,l(Σi=1,...,nαi,j)a
cj + Σv∈

⋃

i=1,...,n Var(pi)v

and if V ⊆
⋃

i=1,...,n Var (pi) the comparison condition is simply af+Σj=1,...,l(Σi=1,...,nαi,j)a
cj ≥

bV . 2

6.3 Lower and upper bounds on complexity

If a program admits a polynomial max-plus interpretation of degree k, then qf(x1,...,xn) ≤
k(Σi=1,...,nxi) + c for some constant c. Hence qf (v1, . . . , vn) is in O(Σi=1,...,n|vi|). Then it
follows from theorem 6 that a program admitting a polynomial max-plus interpretation can
be be evaluated in time 2O(n) on data of size n.

For a lower bound, we refer to [Hof00] where it is shown that ‘non-size increasing’ recursive
programs can simulate Turing machines (TM) running in time 2O(n). This is inspired by the
simulation of TM by APDA in Cook’s theorem [Coo71]: define a recursive function T that,
given an input x ∈ {0, 1}∗, a number of steps s ∈ N, and a position p ∈ Z, computes a pair
(q, i) such that: q is the state at which the machine will be after s steps starting with input x,
and i is the character at position p on the tape of the TM after s steps. Because, the machine
runs in time 2O(|x|) it is possible to represent the number of steps and the position in space
in O(|x|). Then one can implement basic arithmetic operation like increment and decrement
modulo 2cn, and test for zero as size-preserving operations on lists. Finally, the definition of
T (x, s+1, p) can be given recursively in terms of T (x, s, p−1), T (x, s, p), and T (x, s, p+1) by
means of a straightforward case analysis. Quasi-interpretations can be combined with various
methods enforcing program termination. In particular, in [BMM01] it is shown that a program
terminating by lexicographic path-order (lpo6) and admitting a polynomially bounded quasi-
interpretation (polynomial in the usual sense) can be evaluated in Pspace. For a lower bound,
we refer to the encoding of quantified boolean formulas (qbf) in appendix A that terminates by
lpo and admits a multi-linear max-plus quasi-interpretation. By imposing further conditions
on the termination method (product path-order) it is also possible to characterize Ptime

[Mar00]. To prove these results, one can still rely on the basic evaluation strategies presented
in the proof of theorem 6 in appendix B.2.

7 Conclusion

Polynomial interpretations are a classical topic. We have taken a fresh look at them focusing
on space rather than on time bounds and shifting from the (+,×) algebra to the (max ,+)
one. We have shown that the synthesis problem in the multi-linear case is NP-complete. This
case appears to be as a reasonable compromise between complexity of the decision procedure
and power of the analysis. The synthesis problem for max-plus polynomials of degree higher
than 1 remains to be analyzed. Also it remains to be seen whether the approach can be
extended to more complex functional languages including, e.g., higher-order or coinductive
types.

6A popular termination method that can be synthesized in non-deterministic polynomial time; see, e.g.,
[BN98].

17

References

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions.
Computational Complexity, 2:97–110, 1992.

[BCOQ92] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.

[BMM01] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound certifi-
cations. In Andrei Ershov Fourth International Conference ”Perspectives of System Informatics”,
Lecture Notes in Computer Science. Springer, 2001.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[Cas97] V. Caseiro. Equations for defining polytime functions. PhD thesis, University of Oslo, 1997.

[Clo95] P. Clote. Computation models and function algebras. In Proc. Logic and computational complexity,
Springer Lecture Notes in Comp. Sci. 960, 1995.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Methodology, and
Philosophy of Science II, North Holland, 1965.

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal
of the ACM, 18(1):4–18, 1971.

[GR02] S. Gaubert and K. Ricardo. Rational semimodules over the Max-Plus semiring and geometric
approach of discrete event systems. Technical report, 2002. RR-4519, INRIA.

[Gra96] B. Gramlich. On proving termination by innermost termination. In Proc. 7th Int. Conf. on Rewrit-
ing Techniques and Applications (RTA’96), volume 1103 of Lecture Notes in Computer Science,
pages 93–107. Springer-Verlag, 1996.

[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs.
In Proc. ACM POPL, 2003.

[Hof00] M. Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000.

[Hof02] M. Hofmann. The strength of non size-increasing computation. In Proc. ACM POPL, 2002.

[HPS96] R. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types.
In Proc. ACM POPL, 1996.

[Imm99] N. Immerman. Descriptive complexity. Springer, 1999.

[Jon97] N. Jones. Computability and complexity, from a programming perspective. MIT-Press, 1997.

[Lei94] D. Leivant. Predicative recurrence and computational complexity i: word recurrence and poly-time.
Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser:320–343, 1994.

[Mar00] J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. PhD thesis, Universitè
Nancy, 2000. Habilitation à diriger des recherches.

[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter with time bound
certifications. In LPAR, volume 1955 of Lecture Notes in Computer Science, pages 25–42. Springer,
Nov 2000.

[Nec97] G. Necula. Proof carrying code. In Proc. ACM POPL, 1997.

[Par00] L. Pareto. Types for crash prevention. PhD thesis, Chalmers University of Technology, 2000.

[Pug92] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In Communications of the ACM, 102-114, 1992.

[San01] D. Sannella. Mobile resource guarantee. Ist-global computing research proposal, U. Edinburgh,
2001. http://www.dcs.ed.ac.uk/home/mrg/.

[WB00] P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic constraints.
In Proc. TACAS, Springer Lecture Notes in Comp. Sci. 1785, 2000.

18

A Examples of programs and quasi-interpretations

We provide a few examples of programs that can be defined in the language specified in
section 2. Both the insertion sort and the common subsequence algorithms are considered
in the literature [Mar00, Hof00] as situations where the constraints induced by ramification
lead to unnatural programming. Qbf is a Pspace-complete problem admitting a multi-linear
quasi-interpretation7 (a similar encoding can be found in in [Mar00]).

Example 26 (insertion sort) We define a program that sorts lists of tally numbers. We
assume the types bool , tnat , and tnatlist as in section 2.1. Then we define the following
system of recursive functions:

sort(l) =
l = nil ⇒ nil

l = cons(x, l′) ⇒ insert(x, sort(l′))

insert(x, l) =
l = nil ⇒ cons(x, nil)
l = cons(y, l′) ⇒ if (lesseq(x, y), cons(x, cons(y, l′)), cons(y, insert(x, l′)))

if (x, y, z) =
x = tt ⇒ y
x = ff ⇒ z

lesseq(x, y) =
x = 0 ⇒ tt

x = s(x′), y = 0 ⇒ ff

x = s(x′), y = s(y′) ⇒ lesseq(x′, y′) .

The program admits the following quasi-interpretation:

qs = x + 1, qcons = x + l + 1, qsort = l,
qinsert = x + l + 1, qif = max (x, y, z), qlesseq = max (x, y) .

Example 27 (common subsequence) We define a program that computes the length of a
longest common subsequence of two binary words. The length is represented by a tally natural
number and the words by lists of booleans. The definition of the if function is borrowed from
the previous example.

lcs(x, y) =
x = nil ⇒ 0

x = cons(x′, l), y = nil ⇒ 0

x = cons(x′, l), y = cons(y′, l′) ⇒ if (eq(x′, y′), s(lcs(l, l′)),
max (lcs(cons(x′, l), l′), lcs(l, cons(y′, l′))))

eq(x, y) = max (x, y) =
x = tt, y = tt ⇒ tt x = 0 ⇒ y
x = ff, y = ff ⇒ tt x = s(x′), y = 0 ⇒ s(x′)
x = tt, y = ff ⇒ ff x = s(x′), y = s(y′) ⇒ s(max (x′, y′)) .
x = ff, y = tt ⇒ ff

7Qbf is known to be solvable in linear space.

19

The program admits the following quasi-interpretation:

qs = x + 1, qcons = x + l + 1, qlcs = max (x, y),
qif = max (x, y, z), qeq = max (x, y), qmax = max (x, y) .

Example 28 (qbf) We define a program that verifies the validity of a closed quantified
boolean formula (qbf). Truth values are represented by the type bool. Names of variables
are coded as tally natural numbers and we use a list of tally natural numbers to represent the
variables that are assigned the truth value tt. Finally, qbf formulas are elements of the type

form ≡ µt.(v : tnat → t, n : t → t
a : t, t → t, o : t, t → t,
all : tnat , t → t, ex : tnat , t → t) .

We leave to the reader the definition of the boolean functions and, or , not, and of the test
for equality of tally numbers eq. We also need a function that checks for membership of an
element in a list

mem(x, l) =
l = nil ⇒ ff

l = cons(y, l′) ⇒ or(eq(x, y),mem(x, l′)) .

The main program checks a formula with respect to a list of variables that have been affected
the value tt.

qbf (φ) = check(φ,nil)

check (φ, l) =
φ = v(x) ⇒ mem(x, l)
φ = n(φ′) ⇒ not(check (φ′, l))
φ = a(φ′, φ′′) ⇒ and(check (φ′, l), check(φ′′, l))
φ = o(φ′, φ′′) ⇒ or(check (φ′, l), check (φ′′, l))
φ = all(x, φ′) ⇒ and(check (φ′, cons(x, l)), check (φ′, l))
φ = ex(x, φ′) ⇒ or(check (φ′, cons(x, l)), check (φ′, l)) .

The program admits the following quasi-interpretation:

qv = qn = x + 1, qa = qo = qall = qex = x + y + 1,
qnot = qqbf = x, qand = qor = qeq = qmem = max (x, y),
qcheck = φ + l, qmax = max (x, y) .

B Proofs

B.1 Proof of proposition 5

(1) We take d as the largest additive coefficient d′ occurring in the interpretation Σi=1,...,nxi+
d′ of a constructor of positive arity n. Then the assertion is proven by induction on the
structure of the value v.

(2) First we note that for all expressions e with Var(e) = {x1, . . . , xn} and for all substitutions
σ over Var(e) the following identity holds:

qσe = qe(qσ(x1), . . . , qσ(xn)) . (16)

Then we proceed by induction on the definition of the evaluation relation 7→. Let us consider
the case where the last rule applied is (fun). By inductive hypothesis, qe′j

≥ qvj
for j =

1, . . . , n. Hence by the monotonicity property (2.2) of an assignment

qf (qe′1
, . . . , qe′n

) ≥ qf (qv1 , . . . , qvn) . (17)

20

Since q is a quasi-interpretation, we know that

qf(pi,1,...,pi,n) ≥ qei
. (18)

Thus we obtain

qf(e′1,...,e′n) ≥ qf(qv1 ,...,qvn) by (17)

= qσ(f(pi,1 ,...,pi,n)) by definition of rule (fun)

≥ qσei
by (18) and (16)

≥ qv by inductive hypothesis.

B.2 Proof of theorem 6

By property (2.1) of assignments, we note that if e′ is a subexpression of the expression e
then qe ≥ qe′ . Let B = qf(v1,...,vn). It follows from the remark above and (1) that any value
v′ obtained in the course of the computation of f(v1, . . . , vn) is such that |v′| ≤ B. Note that
both the number of constructors in the program and the arity of a function are bound by
a constant. It follows that the number of values to which a function can be applied in the
course of the computation is in 2O(B).

A ‘call-by-value’ evaluation context E for an expression e is defined as follows:

E ::= [] || c(v1, . . . , vi−1, E, ei+1, . . . , en) || g(v1, . . . , vi−1, E, ei+1, . . . , en) .

It is easy to verify that any closed expression e which is not a value admits a unique de-
composition in an evaluation context E and a function application g(v1, . . . , vn) so that
e ≡ E[g(v1, . . . , vn)].

We define an evaluation function Eval that performs an innermost leftmost evaluation of
an expression.

Eval(e) = case

e value : e
e ≡ E[f(v1, . . . , vn)] and ∃σ, i (σ(pi,j) = vj , j = 1, . . . , n) : let v′ = Eval(σ(ei)) in

Eval(E[v′])
else : Return ⊥

where we assume that the function f is defined as in section 2.3 and that invoking Return⊥
stops the computation returning ⊥ as result. Let k be the maximum number of function
symbols that occur in an expression on the right hand side of ⇒ in a function definition. We
note that the evaluation function initially applied to the expression f(v1, . . . , vn) maintains
the invariant that the number of function symbols in an argument e is bound by k. It is easy
to see that the size of an expression e such that qe ≤ B and containing at most k function
symbols has size in O(B). It follows that both the expressions and the values involved in
the evaluation have size in O(B). Hence a stack frame for Eval has size in O(B) and Eval
can be implemented on an auxiliary deterministic pushdown automata with auxiliary memory
which is in O(B). Then by a well-known result by S. Cook [Coo71], the function can also be
implemented to run on a Turing Machine in time 2O(B).

Classically, this transformation relies on a technique called memoization that saves com-
puted results and thus avoids recomputing several times a function with the same arguments.

21

A simple description of this idea is given by the evaluator below Eval m that relies on a global
table T which is initially empty and is accessed with two procedures Insert and Update:

Evalm(e) = case

e value : e
e ≡ E[f(v1, . . . , vn)] and ∃σ, i (σ(pi,j) = vj , j = 1, . . . , n) :

(new , v′′) := Insert(f(v1, ..., vn));
case

new : let v′ = Evalm(σ(ei)) in (1)
Update(f(v1, ..., vn), v′);
Evalm(E[v′])

¬new , v′′ 6= ⊥ : Evalm(E[v′′]) (2)
else : Return ⊥

else : Return ⊥ .

The Insert and Return procedures are defined as follows:

Insert(f(v1, . . . , vn)) = case

(f(v1, . . . , vn), v) ∈ T : (false, v)
else : T := T ∪ {(f(v1, . . . , vn),⊥)}; (true,⊥)

Update(f(v1, . . . , vn), v) = T := T\{(f(v1, . . . , vn),⊥)} ∪ {(f(v1, . . . , vn), v)} .

The table can be implemented so that these procedures run in time in O(B). Since the table
T can contain at most 2O(B) entries, branch (1) can be taken at most 2O(B) times. On the
other hand, branch (2) decreases by one the number of function symbols in the evaluated
expression. This number being bound by a constant, we can take branch (2) only a constant
number of times before running again branch (1). We conclude that the evaluation strategy
runs in time 2O(B). 2

B.3 Proof of theorem 8

We present a polynomial reduction from 3-sat. We need the following lemma that we prove
later.

Lemma 29 To any function symbol f with n arguments we can associate rules of bounded
size and in number polynomial in n so that a max-plus polynomial assignment q satisfies the
constraints induced by the rules iff qf = max (x1, . . . , xn).

In the following we denote with fn a function defined as specified by the lemma so that
any quasi-interpretation satisfies qfn

= max (x1, . . . , xn).
Given a formula in 3-cnf we introduce a pair of unary constructors c and c for every

variable c occurring in the formula. We also assume a unary constructor d and a constant b

Associated to this constructor we have a coefficient ad ≥ 1. We want to force the property:

ac, ac ∈ {ad, 2ad}, ac = ad iff ac = 2ad .

Since ad ≥ 1 we know ad < 2ad and we will use ad to represent the boolean value 0 and 2ad

to represent the boolean value 1.

22

To this end, we write rules of bounded size and in number polynomial in the size of the
formula as follows:

f1(l(x)) ⇒ d(x) f1(d(d(x)) ⇒ l(x) l = c or l = c

f2(c(x), c(y)) ⇒ d(d(b)) f1(d(d(d(x)))) ⇒ c(c(x))

To express that a disjunction (l1 ∨ l2 ∨ l3) in the original formula is satisfied we add the rule:

f1(l1(l2(l3(x)))) ⇒ d(d(d(d(x)))) (19)

which forces ali = 2ad for some i ∈ {1, 2, 3}.

• Let φ be a boolean formula in conjunctive normal form with disjunctions composed of
three literals and let Pφ be the collection of associated functions’ definitions. We check that
an assignment ρ satisfies φ iff there is a max-plus polynomial quasi-interpretation q that
satisfies Pφ.

(⇒) Suppose ρ satisfies φ. We define a quasi interpretations qφ for the associated program
such that:

qf = max (x1, . . . , xn) if arity(f) = n qd = x + k with k ≥ 1

qc =

{

k if ρ(c) = 0
2k if ρ(c) = 1

qc =

{

k if ρ(c) = 1
2k if ρ(c) = 0 .

(⇐) Suppose q is a quasi-interpretation for Pφ. By the lemma we know that qf = max (x1, . . . , xn).
Also if qd = x + k then for all c: qc = qd or qc = qd and qc = x + 2k or qc = x + 2k. Then the
following boolean assignment is well-defined:

ρq(c) =

{

0 if qc = x + k
1 if qc = x + 2k .

By the condition induced by the rule (19) it follows that ρq satisfies the formula φ.

• We now turn to the proof of the lemma 29. Let P be the max-plus polynomial assigned
to f . The polynomial can be written as P = max i∈I(Σj=1,...,nαi,jxj + ai) where αi,j ∈ N and
ai ≥ 0.

Again we assume to have some constructors d, b available. Consider the following rule:

e ≡ f(b, . . . , b, d(x), b, . . . , b) ⇒ f(b, . . . , b, f(b, . . . , b, d(x), b, . . . , b), b, . . . , b) ≡ e ′ (20)

where the expression d(x) occurs as the j th argument. We claim that if the assignment satisfies
this rule then αi,j ∈ {0, 1} for all i ∈ I. Suppose αk,j = max{αi,j | i ∈ I}. By the condition
on assignment it must be that αk,j ≥ 1. We may assume that k is chosen so that αk,j = αk′,j

implies ak ≥ ak′ .
For x large enough, qe = αk,j(x+ad)+ak where ad ≥ 1 is the coefficient associated to the

constructor. On the other hand, qe′ = αk,j(qe) + ak. The inequality qe ≥ qe′ forces αk,j = 1.
Thus now for x large enough the condition simplifies into x + ad + ak ≥ x + ad + 2ak which
forces ak = 0.

Thus, by introducing rules of type (20) for every argument, we can show that: (i) αi,j ∈
{0, 1} and (ii) αi,j = 1 implies ai = 0.

23

• Next we want to force the property that P = max (a, x1, . . . , xn) for some a. To this end
we add the rule

e1 ≡ f(c(x1), . . . , c(xn)) ⇒ f(f(c(x1), . . . , c(xn)), . . . , f(c(x1), . . . , c(xn))) ≡ e2 (21)

for some fresh constructor c. Clearly, if qe1 ≥ qe2 then P cannot add two arguments.

• Finally, to force a = 0 we consider the following rule:

f(e(b, x), b, . . . , b) ⇒ e(f(b, . . . , b), f(b, . . . , b)) . (22)

This requires max (a, x + ae) ≥ ae + 2a. For x = 0 this means max (a, ae) ≥ ae + 2a. Since
a ≥ ae ≥ 1 this forces ae ≥ a and ae ≥ ae + 2a. And the latter implies a = 0.

• In the case all constructors of positive arity are assigned the same coefficient, say k ≥ 1, we
need a more elaborate proof strategy. We note that lemma 29 still holds since its proof does
not require constructors of positive arity with distinct coefficients. So we can still use fn as a
function symbol such that qfn

= max (x1, . . . , xn). In the following we will write rules using
always the same constructor symbols c and b. In case the patterns superpose, it is intended
that the constructor symbols are suitably renamed.

• Suppose f is a function symbol of arity n and consider the rule:

f1(c(c(x))) ⇒ f(x, . . . , x) . (23)

If qf = max i∈I(Σj=1,...,nαi,jxj + ai) is a max-plus polynomial (where αi,j ∈ N and ai ≥ 0)
then the rule (23) forces the following conditions:

∀ i ∈ I 1 ≥ Σj=1,...,nαi,j and 2k ≥ ai . (24)

Thus qf must be a multi-linear polynomial of the shape:

qf = max (a0, a1 + x1, . . . , an + xn) , (25)

and we can assume 2k ≥ a0 ≥ ai ≥ 0, for i = 1, . . . , n.

• Next add rules of the following shape for the same function symbol f :

f(b, . . . , b, c(x), b, . . . , b) ⇒ c(c(x)) . (26)

If c(x) occurs as the jth argument then we require max (a0, . . . , aj−1, x+k+aj, aj+1, . . . , an) ≥
2k + x which forces aj ≥ k. By varying the position of c(x) between the first and the last
argument of f we obtain the condition

ai ≥ k for i = 1, . . . , n . (27)

• Now add a rule of the following shape for the same function symbol f :

f(c(c(x1)), . . . , c(c(xn)) ⇒ c(c(c(c(b)))) . (28)

This requires max (a0, 2k + a1 + x1, . . . , 2k + an + xn) ≥ 4k. Since by condition (24) a0 ≤ 2k,
this is equivalent to

a0 = max (a1, . . . , an) = 2k . (29)

24

• For a function symbol f of arity 2 we add a rule of the following shape:

f2(c(c(c(x))), c(c(c(c(b))))) ⇒ f(f(b, x), b) . (30)

This requires max (x+3k, 4k) ≥ max (x+a1+a2, a0, a2, a1+a0, 2a1) and since 2k ≥ a0 ≥ a1, a2

this is equivalent to 3k ≥ a1 + a2 which coupled with condition (29) can be expressed as:

(a1 = k ∧ a2 = 2k) ∨ (a1 = 2k ∧ a2 = k) . (31)

The goal here is to represent a boolean variable with the coefficients a1, a2 of the binary
function f so that the variable evaluates to 1 iff a1 = 2k.

• Given a formula φ in 3-cnf, for every propositional variable u we introduce a binary
function symbol u subject to the conditions (24,27,29,31). Thus qu = max (a1 + x1, a2 + x2)
and (a1 = k ∧ a2 = 2k) ∨ (a1 = 2k ∧ a2 = k).

• For every 3-disjunction d in the formula φ we introduce a ternary function symbol d subject
to the conditions (24,27). Thus qd = max (b0, b1 + x1, b2 + x2, b3 + x3) with 2k ≥ b0 ≥ bi ≥ k
for i = 1, . . . , 3. If the first literal of the disjunction d is the propositional variable u then we
want to force b1 = a1. This can be done with the rules:

d(c(c(x1)), b, b) ⇒ u(c(c(x1)), b) u(c(c(x1)), b) ⇒ d(c(c(x1)), b, b) . (32)

On the other hand, if the first literal of the disjunction is u then we want to force b1 = a2.
Thus we write:

d(c(c(x)), b, b) ⇒ u(b, c(c(x))) u(b, c(c(x))) ⇒ d(c(c(x)), b, b) . (33)

We add this type of rules for every disjunction d and for every argument of the associated
function symbol.

• To express the fact that every disjunction d evaluates to 1 we require that at least one
of the coefficients of the associated ternary function evaluates to 2k. This is expressed by a
variant of the rule (28) as follows:

d(c(c(x1)), c(c(x2)), c(c(x3))) ⇒ c(c(c(c(b)))) . (34)

Then satisfying boolean assignments and quasi-interpretations can be related along the lines
of what has been discussed above. 2

B.4 Proof of proposition 11

(1) By induction on the structure of p.

p ≡ c Then qc = 0 and we take αj = 0 for j = 1, . . . , l.

p ≡ x Then qx = x and we take as in the previous case αj = 0 for j = 1, . . . , l.

p ≡ ck(p1, . . . , pn) By hypothesis on the shape of patterns in functions’ definitions we know
that Var(pi)∩Var (pj) = ∅ if i 6= j. By inductive hypothesis, qpi

= Σv∈Var(pi)v+Σj=1,...,lαi,ja
cj

for some αi,j ∈ N. Then

qp = qp1 + · · · qpn + ack

= Σv∈Var(p1)v + · · · + Σv∈Var(pn)v + Σj=1,...,lα1,ja
cj + · · · + Σj=1,...,lαn,ja

cj + ack

= Σv∈Var(p)v + Σj=1,...,lα
′
ja

cj

25

where α′
j =

{

Σi=1,...,nαi,j if j 6= k
Σi=1,...,nαi,k + 1 if j = k .

(2) We start by computing:

qf(p1,...,pn) = max I⊆{1,...,n}(a
f
I + Σi∈I(Σv∈Var(pi)v + Σj=1,...,lαi,ja

cj))

= max I⊆{1,...,n}(Σv∈
⋃

i∈I Var(pi)v + af
I + Σj=1,...,l(Σi∈Iαi,j)a

cj)

Now, let P be the multi-linear polynomial determined by the coefficients bV . We show that
qf(p1,...,pn) = P .

qf(p1,...,pn) ≤ P. Fix I ⊆ {1, . . . , n} and take V =
⋃

i∈I Var(pi). Then KV = {k | V ∩
Var(pk) 6= ∅} ⊆ I, as by the conditions on patterns, Var (pi) ∩ Var(pk) 6= ∅ implies i = k.

It follows, by the normalization constraint that af
KV

≥ af
I . We also note that if i ∈ I\KV

then Var(pi) = ∅ and therefore αi,j = 0 for j = 1, . . . , l. Hence

Σi∈Iαi,j = Σi∈KV
αi,j + Σi∈I\KV

αi,j = Σi∈KV
αi,j .

P ≤ qf(p1,...,pn). Given V and the related set KV we set I = KV . Then af
I = af

KV
, V ⊆

⋃

i∈I Var(pi), and Σk∈KV
αk,j = Σi∈Iαi,j. 2

B.5 Proof of proposition 14

(1) We note that in general, qei
≥ v if v ∈ Vi. Thus qei

+qej
is multi-linear only if Vi∩Vj = ∅.

(1.1) Since ac ≥ 1, to compute qc(e1,...,en) we have to assume that

Vi ∩ Vj = ∅ if i 6= j . (35)

Otherwise the resulting polynomial is not multi-linear. Then

qc(e1,...,en) = maxUi⊆Vi,i=1,...,n(Σv∈
⋃

i=1,...,n Ui
v + Σi=1,...,nai

Ui
+ ac) .

Let U ⊆ V . To determine the coefficient bU of qc(e1,...,en) we have to consider all families
U1, . . . , Un such that Ui ⊆ Vi for i = 1, . . . , n and

⋃

i=1,...,n Ui = U . This forces Ui = U ∩ Vi.
Thus

bU = Σi=1,...,nai
U∩Vi

+ ac . (36)

Therefore condition (35) is also sufficient to preserve multi-linearity.

(1.2) To compute qf(e1,...,en) suppose moreover that qf is determined by the coefficients

{af
I | I ⊆ {1, . . . , n}}. It is necessary to assume that af

I = −∞ whenever 6↓ I. Since we
require that qf is in normal form we may equivalently express this condition by stating that

af

{i,j}
= −∞ whenever i 6= j and Vi ∩ Vj 6= ∅ . (37)

Otherwise, the resulting polynomial is not multi-linear. Then

qf(e1,...,en) = max I⊆{1,...,n},↓I(Σi∈I(maxUi⊆Vi
(Σv∈Ui

v + ai
Ui

+ af
I)))

= max I⊆{1,...,n},↓I,Ui⊆Vi
(Σv∈

⋃

i∈I Ui
v + Σi∈Ia

i
Ui

+ af
I) .

26

Let U ⊆ V . To determine the coefficient bU of qf(e1,...,en) we have to consider all the I ⊆
{1, . . . , n} such that (i) ↓ I and (ii) for Ui ⊆ Vi, i ∈ I, we have U =

⋃

i∈I Ui. By (i), (ii) is
actually equivalent to U ⊆

⋃

i∈I Vi taking Ui = U ∩ Vi. Thus

bU = max I⊆{1,...,n},↓I,U⊆
⋃

i∈I Vi
(Σi∈Ia

i
U∩Vi

+ af
I) . (38)

Therefore condition (37) is also sufficient to preserve multi-linearity.

(2) Following the analysis above, we prove the assertion by induction on the proof of (e, C).

e ≡ x. Then qe ≡ x is multi-linear, C = ∅, and q satisfies C.

e ≡ c(e1, . . . , en). Suppose ` (ei, Ci) for i = 1, . . . , n. We distinguish two cases.

Var(ei) ∩ Var(ej) = ∅ if i 6= j. Then ` (c(e1, . . . , en),
⋃

i=1,...,n Ci). If qe is multi-linear then
qei

must be multi-linear since qc(e1,...,en) ≥ qei
. Thus by inductive hypothesis, q satisfies Ci

for i = 1, . . . , n, that is q satisfies
⋃

i=1,...,n Ci. Vice versa, if q satisfies
⋃

i=1,...,n Ci then by
inductive hypothesis, qei

is multi-linear and by the computation above qe is also multi-linear.

Var(ei) ∩ Var(ej) 6= ∅ for i 6= j. Then ` (c(e1, . . . , en), {⊥} ∪
⋃

i=1,...,n Ci). Hence qc(e1,...,en)

cannot be multi-linear and q cannot satisfy {⊥} ∪
⋃

i=1,...,n Ci.

e ≡ f(e1, . . . , en). Suppose ` (ei, Ci) for i = 1, . . . , n. Again if qe is multi-linear then qei

is multi-linear and by inductive hypothesis q satisfies Ci for i = 1, . . . , n. Moreover, since
q is multi-linear it must also satisfy condition (37). Vice versa, if q satisfies the constraints

{af
i,j = −∞ | i 6= j,Var (ei) ∩ Var (ej) 6= ∅} ∪

⋃

i=1,...,n Ci then by inductive hypothesis qei
is

multi-linear for i = 1, . . . , n and qe is also multi-linear by the computation above. 2

B.6 Proof of proposition 16

(1) Clearly, if the condition (12) holds then P1 ≥ P2. Vice versa suppose P1 ≥ P2 and
consider a monomial Σi∈Jxi + bJ in P2 and the vector XJ whose components are specified by:

(XJ)i =

{

x if i ∈ J
0 otherwise

Then P1(XJ) ≥ P2(XJ) ≥ (]J)x+bJ . For sufficiently large x this means that there is a K ⊇ J
such that P1(XJ) = (]J)x+aK ≥ (]J)x+bJ . Which implies that max{aI | I ⊇ J} ≥ aK ≥ bJ .

(2) If P1 is in normal form then max{aI | I ⊇ J} = aJ and the argument in (1) applies. 2

B.7 Proof of proposition 19

Initially, the constraints have the shapes (a–c) specified in proposition 18. We also allow
constraints of the shape Σj∈Jxj = −∞. It will be convenient to add to the system the
constraints y ≥ 0 whenever y ≥ 1 and write a sum Σj=1,...,kαjuj where αj ∈ N as Σj∈Jxj for

27

a suitable j. Using this notation, we introduce the following simplification rules:

(0)
S, x + Σj∈J1

yj ≥ Σj∈J2
yj

S, x ≥ 0, x + Σj∈J1
yj ≥ Σj∈J2

yj

(1)
S, (x = −∞), x + Σj∈J1

yj ≥ Σj∈J2
xj + Σj∈J3

yj

S, (x = −∞), Σj∈J2
xj = −∞

(2)
S, (x = −∞), (x + Σj∈Jxj = −∞)

S, (x = −∞)

(3)
S, x ≥ 0, α ≥ 1, (αx + Σj∈Jxj = −∞)

S, x ≥ 0, (Σj∈Jxj = −∞)

(4)
S, (x′ = −∞), x + Σj∈J1

yj ≥ x′ + Σj∈J2
xj + Σj∈J3

yj

S, (x′ = −∞)

(5)
S, x′

k ≥ 0 (for all k ∈ K) x + Σj∈Jyj ≥ Σk∈Kx′

k + Σj∈J′yj

S, x′

k ≥ 0 (for all k ∈ K), x ≥ 0, x + Σj∈Jyj ≥ Σk∈Kx′

k + Σj∈J′yj
.

To enforce a (quick) termination, rules (0) and (5) should be applied only if the constraint
x ≥ 0 is not already in the hypothesis and rule (3) should be applied by taking the factor
α as large as possible. Let S ′

1 be the system resulting from the application of the rules
above. Clearly an assignment satisfies the initial system iff it satisfies S ′

1. Let X1 = {x | x =
−∞ occurs in S ′

1} and X0 = {x | x ≥ 0 occurs in S ′
1}. If X1 ∩ X0 6= ∅ then 0 = ∞ occurs

in S ′
1 and the initial system is not satisfiable.

Otherwise, let X2 be composed of the variables that are neither in X1 nor in X0. The
constraints in S ′

1 have one of the following forms:

(a) y ≥ 1, y ≥ 0 (b) x ≥ 0 (c) (x = ∞) (d) (Σj∈Jxj = −∞) for]J ≥ 2

(e) x + Σj∈J1yj ≥ Σj∈J2xj + Σj∈J3yj .

We note that in the constraint (d) it must be the case that xj ∈ X2 for all j ∈ J (rules (2) and
(3)), and that in the constraint (e) x, xj /∈ X1 for all j ∈ J2 (rules (1) and (4)). Now suppose
the assignment ρ satisfies S ′

1 then we claim that ρ′ defined by ρ′(x) = ρ(x) if x ∈ X1 ∪ X0

and ρ′(x) = −∞ otherwise satisfies S ′
1. Indeed ρ′ may behave differently from ρ only in the

constraints of the shape (d) and (e).
Since all the variables in the constraint (d) are in X2, ρ′ obviously satisfies this constraint.

As for the constraint (e): if ∃ j ∈ J2 (xj ∈ X2) then ρ′ satisfies the constraints. Otherwise, it
must be that ∀j ∈ J2(xj ∈ X0) and then by rule (5) we know that x ∈ X0 so that ρ′ behaves
as ρ on this constraint.

Thus the system S2(~x′′) in the statement of the proposition can be obtained by restricting
the system S ′

1 to the constraints that involve only the variables in X0. 2

B.8 Proof of theorem 21

NP-hardness follows from proposition 8. To establish that the problem can be solved in
non-deterministic polynomial time we provide a rough upper bound to the size of the system
of inequalities as a function of the size of the program. The size of a pattern pi or of an
expression e is defined as for values (definition 1). Let m be the size of the greatest pattern or

28

expression. Let n be the maximum number of arguments of a function. Then d = (n + 1)m
is an upper bound to the size of a rule. Note that by the hypothesis that the rules in the
program have bounded size, d is bounded by some constant. Still, we will take d into account
in the following to see how it affects the complexity.

Let r be the number of rules that compose a program and f be the number of functions
in the program. Then f ≤ r and the size of the program is bound by rd. Let c be the number
of constructors of positive arity. Clearly c ≤ rd.

In the related synthesis problem, we have to determine at most c+f2n coefficients subject
to a certain number of inequalities where we count the size of an inequality u ≥ v as the size
of u plus the size of v. We have c inequalities of the form ac ≥ 1, at most fn inequalities of
the form af

i ≥ 0, at most f22n inequalities of the shape af
I ≥ af

J , and at most f2n inequalities

of the shape af
I = −∞. Hence the resulting system has a size in O(f22n).

It remains to determine the size of the system induced by the conditions qf(p1,...,pn) ≥ qe.

The number of variables in the patterns is at most nm. Hence we have at most r2nm = r2d

inequalities of the shape max{bV | V ⊇ U} ≥ b′U .
For each such inequality, we select non-deterministically the maximum on the left-hand

side, say bV ′ . Then we we have to bound the size of the coefficients bV ′U and b′U . The
coefficient bV is determined in proposition 11(2). We note that the multiplicative coefficient
Σk∈KV

αk,j is bound by nm and therefore it has size in O(log(nm)) = O(log(d)). It follows that
the size of the coefficient bV ′ is in O(c log(d)). The form of the coefficient b′U is determined in
proposition 14. Let zi denote an upper bound on the size of a coefficient b′U for an expression
of height i. Then zi+1 ≤ 2nnzi. An expression e has size and hence height at most m, thus
the size of b′U is bound by (2nn)m = 2nmnm ≤ 22nm. Assuming c log(d) ≤ 22nm, we conclude
that the size of the system is in O(r23d). We expect the factor 3 to be reducible but note
that the mere fact that we try to determine a multi-linear polynomial with d indeterminates
forces the resulting system to be exponential in d.

The last two steps presented in propositions 18 and 19 output a system whose size is
polynomial in the size of the one in input and since the final system is composed of linear
inequalities over Q+ it can be solved in polynomial time. 2

29

