Skip to main content

Max-Plus Quasi-interpretations

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2701))

Included in the following conference series:

Abstract

Quasi-interpretations are a tool to bound the size of the values computed by a first-order functional program (or a term rewriting system) and thus a mean to extract bounds on its computational complexity. We study the synthesis of quasi-interpretations selected in the space of polynomials over the max-plus algebra determined by the non-negative rationals extended with −∞ and equipped with binary operations for the maximum and the addition. We prove that in this case the synthesis problem is NP-hard, and in NP for the particular case of multi-linear quasi-interpretations when programs are specified by rules of bounded size. The relevance of multi-linear quasi-interpretations is discussed by comparison to certain syntactic and type theoretic conditions proposed in the literature to control time and space complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Amadio. Max-plus quasi-interpretations. Research Report Laboratoire d’Informatique Fondamentale de Marseille 10-2002, December 2002.

    Google Scholar 

  2. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Computational Complexity, 2:97–110, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.

    Google Scholar 

  4. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound certifications. In Ershov 4th Int. Conf., Springer LNCS, 2001.

    Google Scholar 

  5. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

    Google Scholar 

  6. V. Caseiro. Equations for defining polytime functions. PhD thesis, University of Oslo, 1997.

    Google Scholar 

  7. P. Clote. Computation models and function algebras. In Proc. Logic and computational complexity, Springer Lecture Notes in Comp. Sci. 960, 1995.

    Google Scholar 

  8. A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Methodology, and Philosophy of Science II, North Holland, 1965.

    Google Scholar 

  9. S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM, 18(1):4–18, 1971.

    Article  MATH  Google Scholar 

  10. B. Gramlich. On proving termination by innermost termination. In Proc. RTA, Springer Lecture Notes in Comp. Sci. 1103, 1996.

    Google Scholar 

  11. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In Proc. ACM POPL, 2003.

    Google Scholar 

  12. M. Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of Computing, 7(4):258–289, 2000.

    MATH  MathSciNet  Google Scholar 

  13. M. Hofmann. The strength of non size-increasing computation. In Proc. ACM POPL, 2002.

    Google Scholar 

  14. R. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In Proc. ACM POPL, 1996.

    Google Scholar 

  15. N. Jones. Computability and complexity, from a programming perspective. MIT-Press, 1997.

    Google Scholar 

  16. D. Leivant. Predicative recurrence and computational complexity i: word recurrence and poly-time. Feasible mathematics II, Clote and Remmel (eds.), Birkhäuser: 320–343, 1994.

    Google Scholar 

  17. J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. PhD thesis, Universitè Nancy, 2000. Habilitation à diriger des recherches.

    Google Scholar 

  18. J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter with time bound certifications. In Proc. LPAR, Springer Lecture Notes in Comp. Sci. 1955, 2000.

    Google Scholar 

  19. L. Pareto. Types for crash prevention. PhD thesis, Chalmers University, 2000.

    Google Scholar 

  20. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence analysis. In Communications of the ACM, 102–114, 1992.

    Google Scholar 

  21. D. Sannella. Mobile resource guarantee. Ist-global computing research proposal, U. Edinburgh, 2001. http://www.dcs.ed.ac.uk/home/mrg/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amadio, R.M. (2003). Max-Plus Quasi-interpretations. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44904-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40332-6

  • Online ISBN: 978-3-540-44904-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics