Abstract
We give a proof for the strong normalization result in the intersection type discipline, which we obtain by putting together some well-known results and proof techniques. Our proof uses a variant of Klop’s extended λ-calculus, for which it is shown that strong normalization is equivalent to weak normalization. This is proved here by means of a finiteness of developments theorem, obtained following de Vrijer’s combinatory technique. Then we use the standard argument, formalized by Lévy as “the creation of redexes is decreasing” and implemented in proofs of weak normalization by Turing, and Coppo and Dezani for the intersection type discipline, to show that a typable expression of the extended calculus is normalizing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. van Bakel, Intersection type assignment systems, TCS Vol. 151 No. 2 (1995) 348–435.
H. Barendregt, The Lambda Calculus, Studies in Logic 103, North-Holland, Revised Edition (1984).
H. Barendregt, Lambda Calculi with Types, in Handbook of Logic in Computer Science, Vol. 2 (S. Abramsky, Dov M. Gabbay & T.S.E. Maibaum, Eds.), Oxford University Press (1992) 117–309.
H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, J. of Symbolic Logic 48 (1983) 931–940.
M. Coppo, M. Dezani-Ciancaglini, An extension of the basic functionality theory for the λ-calculus, Notre Dame J. of Formal Logic 21 (1980) 685–693.
M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Functional characters of solvable terms, Zeit. Math. Logik Grund. 27 (1981) 45–58.
R. Gandy, An early proof of normalization by A.M. Turing, In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J.R. Hindley and J.P. Seldin, Eds.), Academic Press (1980) 453–455.
J.-Y. Girard, Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types, Second Scandinavian Logic Symposium (Ed. J.E. Fenstad), North-Holland (1971) 63–92.
J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press (1989).
Ph. de Groote, The conservation theorem revisited, Typed Lambda Calculi and Applications, Lecture Notes in Comput. Sci. 664 (1993) 163–178.
R. Hindley, The simple semantics for Coppo-Dezani-Sallé types, Intern. Symp. on Programming, Lecture Notes in Comput. Sci. 137 (1982) 212–226.
R. Hindley, Types with intersection: an introduction, Formal Aspects of Computing Vol. 4 (1992) 470–486.
F. Kamareddine, Postponement, conservation and preservation of strong normalization for generalized reduction, J. of Logic and Computation Vol. 10 No. 5 (2000) 721–738.
A. Kfoury, J. Wells, New notions of reduction and non-semantic proofs of strong β-normalization in typed λ-calculi, LICS (1995) 311–321.
A. Kfoury, J. Wells, Addendum to “New notions of reduction and nonsemantic proofs of strong β-normalization in typed λ-calculi”, Tech. Rep. 95-007, Comput. Sci. Dept., Boston University (1995).
Z. Khasidashvili, M. Ogawa, V. van Oostrom, Uniform normalisation beyond orthogonality, RTA, Lecture Notes in Comput. Sci. 2051 (2001) 122–136.
S.C. Kleene, On the interpretation of intuitionistic number theory, J. of Symbolic Logic, Vol. 10 (1945) 109–124.
J.W. Klop, Combinatory Reduction Systems, PhD Thesis, Utrecht University. Mathematical Centre Tracts Vol. 127, Mathematisch Centrum, Amsterdam (1980).
J.-L. Krivine, Lambda-Calcul: Types et Modèles, Masson, Paris (1990). English translation “Lambda-Calculus, Types and Models”, Ellis Horwood (1993).
J.-J. Lévy, Réductions correctes et optimales dans le lambda-calcul, Thèse, Université Paris 7 (1978).
M. Parigot, Internal labellings in lambda-calculus, MFCS, Lecture Notes in Comput. Sci. 452 (1990) 439–445.
G. Plotkin, Lambda-definability and logical relations, Memo SAI-RM-4, University of Edinburgh (1973).
G. Pottinger, A type assignment for the strongly normalizable λ-terms, In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J.R. Hindley and J.P. Seldin, Eds.), Academic Press (1980) 561–577.
F. van Raamsdonk, P. Severi, M.H. Sørensen, H. Xi, Perpetual reductions in λ-calculus, Information and Computation Vol. 149 No. 2 (1999) 173–225.
P. Sallé, Une extension de la théorie des types en λ-calcul, ICALP, Lecture Notes in Comput. Sci. 62 (1978) 398–410.
M.H. Sørensen, Strong normalization from weak normalization in typed λ-calculi, Information and Computation Vol. 133 No. 1 (1997) 35–71.
W. Tait, Intensional interpretations of functionals of finite type I, J. of Symbolic Logic 32 (1967) 198–212.
W. Tait, A realizability interpretation of the theory of species, Logic Colloquium, Lecture Notes in Mathematics 453 (1975) 240–251.
R. de Vrijer, A direct proof of the finite developments theorem, J. of Symbolic Logic, Vol. 50 (1985) 339–343.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boudol, G. (2003). On Strong Normalization in the Intersection Type Discipline. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_5
Download citation
DOI: https://doi.org/10.1007/3-540-44904-3_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40332-6
Online ISBN: 978-3-540-44904-1
eBook Packages: Springer Book Archive