Skip to main content

On Strong Normalization in the Intersection Type Discipline

Extended Abstract

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2701))

Included in the following conference series:

  • 321 Accesses

Abstract

We give a proof for the strong normalization result in the intersection type discipline, which we obtain by putting together some well-known results and proof techniques. Our proof uses a variant of Klop’s extended λ-calculus, for which it is shown that strong normalization is equivalent to weak normalization. This is proved here by means of a finiteness of developments theorem, obtained following de Vrijer’s combinatory technique. Then we use the standard argument, formalized by Lévy as “the creation of redexes is decreasing” and implemented in proofs of weak normalization by Turing, and Coppo and Dezani for the intersection type discipline, to show that a typable expression of the extended calculus is normalizing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. van Bakel, Intersection type assignment systems, TCS Vol. 151 No. 2 (1995) 348–435.

    Google Scholar 

  2. H. Barendregt, The Lambda Calculus, Studies in Logic 103, North-Holland, Revised Edition (1984).

    Google Scholar 

  3. H. Barendregt, Lambda Calculi with Types, in Handbook of Logic in Computer Science, Vol. 2 (S. Abramsky, Dov M. Gabbay & T.S.E. Maibaum, Eds.), Oxford University Press (1992) 117–309.

    Google Scholar 

  4. H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, J. of Symbolic Logic 48 (1983) 931–940.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Coppo, M. Dezani-Ciancaglini, An extension of the basic functionality theory for the λ-calculus, Notre Dame J. of Formal Logic 21 (1980) 685–693.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Functional characters of solvable terms, Zeit. Math. Logik Grund. 27 (1981) 45–58.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Gandy, An early proof of normalization by A.M. Turing, In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J.R. Hindley and J.P. Seldin, Eds.), Academic Press (1980) 453–455.

    Google Scholar 

  8. J.-Y. Girard, Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types, Second Scandinavian Logic Symposium (Ed. J.E. Fenstad), North-Holland (1971) 63–92.

    Google Scholar 

  9. J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press (1989).

    Google Scholar 

  10. Ph. de Groote, The conservation theorem revisited, Typed Lambda Calculi and Applications, Lecture Notes in Comput. Sci. 664 (1993) 163–178.

    Chapter  Google Scholar 

  11. R. Hindley, The simple semantics for Coppo-Dezani-Sallé types, Intern. Symp. on Programming, Lecture Notes in Comput. Sci. 137 (1982) 212–226.

    Google Scholar 

  12. R. Hindley, Types with intersection: an introduction, Formal Aspects of Computing Vol. 4 (1992) 470–486.

    Article  MATH  Google Scholar 

  13. F. Kamareddine, Postponement, conservation and preservation of strong normalization for generalized reduction, J. of Logic and Computation Vol. 10 No. 5 (2000) 721–738.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Kfoury, J. Wells, New notions of reduction and non-semantic proofs of strong β-normalization in typed λ-calculi, LICS (1995) 311–321.

    Google Scholar 

  15. A. Kfoury, J. Wells, Addendum to “New notions of reduction and nonsemantic proofs of strong β-normalization in typed λ-calculi”, Tech. Rep. 95-007, Comput. Sci. Dept., Boston University (1995).

    Google Scholar 

  16. Z. Khasidashvili, M. Ogawa, V. van Oostrom, Uniform normalisation beyond orthogonality, RTA, Lecture Notes in Comput. Sci. 2051 (2001) 122–136.

    Google Scholar 

  17. S.C. Kleene, On the interpretation of intuitionistic number theory, J. of Symbolic Logic, Vol. 10 (1945) 109–124.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.W. Klop, Combinatory Reduction Systems, PhD Thesis, Utrecht University. Mathematical Centre Tracts Vol. 127, Mathematisch Centrum, Amsterdam (1980).

    Google Scholar 

  19. J.-L. Krivine, Lambda-Calcul: Types et Modèles, Masson, Paris (1990). English translation “Lambda-Calculus, Types and Models”, Ellis Horwood (1993).

    MATH  Google Scholar 

  20. J.-J. Lévy, Réductions correctes et optimales dans le lambda-calcul, Thèse, Université Paris 7 (1978).

    Google Scholar 

  21. M. Parigot, Internal labellings in lambda-calculus, MFCS, Lecture Notes in Comput. Sci. 452 (1990) 439–445.

    Google Scholar 

  22. G. Plotkin, Lambda-definability and logical relations, Memo SAI-RM-4, University of Edinburgh (1973).

    Google Scholar 

  23. G. Pottinger, A type assignment for the strongly normalizable λ-terms, In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J.R. Hindley and J.P. Seldin, Eds.), Academic Press (1980) 561–577.

    Google Scholar 

  24. F. van Raamsdonk, P. Severi, M.H. Sørensen, H. Xi, Perpetual reductions in λ-calculus, Information and Computation Vol. 149 No. 2 (1999) 173–225.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Sallé, Une extension de la théorie des types en λ-calcul, ICALP, Lecture Notes in Comput. Sci. 62 (1978) 398–410.

    Google Scholar 

  26. M.H. Sørensen, Strong normalization from weak normalization in typed λ-calculi, Information and Computation Vol. 133 No. 1 (1997) 35–71.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Tait, Intensional interpretations of functionals of finite type I, J. of Symbolic Logic 32 (1967) 198–212.

    Article  MATH  MathSciNet  Google Scholar 

  28. W. Tait, A realizability interpretation of the theory of species, Logic Colloquium, Lecture Notes in Mathematics 453 (1975) 240–251.

    Article  MathSciNet  Google Scholar 

  29. R. de Vrijer, A direct proof of the finite developments theorem, J. of Symbolic Logic, Vol. 50 (1985) 339–343.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boudol, G. (2003). On Strong Normalization in the Intersection Type Discipline. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44904-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40332-6

  • Online ISBN: 978-3-540-44904-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics