Skip to main content

A Sound and Complete CPS-Translation for λμ-Calculus

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2701))

Included in the following conference series:

Abstract

We investigate injectivity of the novel CPS-translation with surjective pairing which is originally introduced by Hofmann-Streicher. It is syntactically proved that the CPS-translation is sound and complete not only for the λ-calculus but also for the extensional λμ-calculus. The injective CPS-translation reveals a Church-Rosser fragment of the λ-calculus with surjective pairing and a neat connection to C-monoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. P. Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition), North-Holland, 1984.

    Google Scholar 

  2. K. Baba, S. Hirokawa, and K. Fujita: Parallel Reduction in Type-Free λμ-Calculus, Electronic Notes in Theoretical Computer Science, Vol. 42, pp. 52–66, 2001.

    Article  Google Scholar 

  3. P.-L. Curien: Categorical Combinators, Sequential Algorithms and Functional Programming, Pitman, London/John Wiley&Sons, 1986.

    MATH  Google Scholar 

  4. K. Fujita: Simple Models of Type Free λμ-Calculus, The 18th Conference Proceedings Japan Society for Software Science and Technology, 2001 (in Japanese).

    Google Scholar 

  5. K. Fujita: An interpretation of λμ-calculus in λ-calculus, Information Processing Letters, Vol. 84, No. 5, pp. 261–264, 2002.

    MATH  MathSciNet  Google Scholar 

  6. K. Fujita: Continuation Semantics and CPS-translation of λμ-Calculus, Scientiae Mathematicae Japonicae, Vol. 57, No.1, pp. 73–82, 2003.

    MATH  MathSciNet  Google Scholar 

  7. T. G. Griffin: A Formulae-as-Types Notion of Control, Proc. the 17th Annual ACM Symposium on Principles of Programming Languages, pp. 47–58, 1990.

    Google Scholar 

  8. C. A. Gunter and D. S. Scott: Semantic Domains, in: Handbook of Theoretical Computer Science Vol. B: Formal Models and Semantics, Elsevier Science Publishers B. V., 1990.

    Google Scholar 

  9. M. Hofmann and T. Streicher: Continuation models are universal for λμ-calculus, Proc. the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 387–395, 1997.

    Google Scholar 

  10. W. Howard: The Formulae-as-Types Notion of Constructions, in: To H.B.Curry: Essays on combinatory logic, lambda-calculus, and formalism, Academic Press, pp. 479–490, 1980.

    Google Scholar 

  11. J. Lambek and P. J. Scott: Introduction to higher order categorical logic, Cambridge University Press, 1986.

    Google Scholar 

  12. C. R. Murthy: An Evaluation Semantics for Classical Proofs, Proc. the 6th Annual IEEE Symposium on Logic in Computer Science, pp. 96–107, 1991.

    Google Scholar 

  13. M. Parigot: λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction, Lecture Notes in Computer Science 624, pp. 190–201, 1992.

    Google Scholar 

  14. M. Parigot: Proofs of Strong Normalization for Second Order Classical Natural Deduction, J. Symbolic Logic, Vol. 62, No. 4, pp. 1461–1479, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Plotkin: Call-by-Name, Call-by-Value and the λ-Calculus, Theoretical Computer Science, Vol. 1, pp. 125–159, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Selinger: Control Categories and Duality: on the Categorical Semantics of the Lambda-Mu Calculus, Math. Struct. in Compu. Science, Vol. 11, pp. 207–260, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Streicher and B. Reus: Classical Logic, Continuation Semantics and Abstract Machines, J. Functional Programming, Vol. 8, No. 6, pp. 543–572, 1998.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fujita, Ke. (2003). A Sound and Complete CPS-Translation for λμ-Calculus. In: Hofmann, M. (eds) Typed Lambda Calculi and Applications. TLCA 2003. Lecture Notes in Computer Science, vol 2701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44904-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44904-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40332-6

  • Online ISBN: 978-3-540-44904-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics