Skip to main content

Abstraction and Phase Transitions in Relational Learning

  • Conference paper
  • First Online:
Abstraction, Reformulation, and Approximation (SARA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1864))

Abstract

Computational complexity is often a major obstacle to the application of AI techniques to significant real-world problems. Efforts are then required to understand the sources of this complexity, in order to tame it without introducing, if possible, too strong simplifications that make either the problem or the technique useless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choueiry, B., S. McIlraith, Y. Iwasaki, T. Loeser, T. Neller, R. Engelmore and R. Fikes (1998). “Thoughts on a Practical Theory of Reformulation for Reasoning about Physical Systems”. In Proc. SARA’ 98, Pacific Grove, California.

    Google Scholar 

  2. Ellman, T. (1993). Hillclimbing in a Hierarchy of Abstraction Spaces.Rutgers University.

    Google Scholar 

  3. Newell, A. and H. Simon (1972). Human Problem Solving. Englewood Cliff, NJ: Prentice-Hall.

    Google Scholar 

  4. Amarel, S. (1983). “Representation in Problem Solving”. In Methods of Heuristics. Lawrence Erlbaum: Palo Alto,CA, p. 131–171.

    Google Scholar 

  5. Korf, R.E. (1980). “Towards a Model for Representation Change”. Artificial Intelligence, 14, 41–78.

    Article  MathSciNet  Google Scholar 

  6. Cheeseman P., Kanefsky B., and Taylor W.M. (1991). “Where the Really Hard Problems Are”. In Proc. 12th Int. Joint Confon Artificial Intelligence (Sidney, Australia), pp. 331–337.

    Google Scholar 

  7. Hogg, T., B.A. Huberman and C.P. Williams, (Eds). (1996). Artificial Intelligence, Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity, 81 (1–2).

    Google Scholar 

  8. Gent, I.P. and Walsh T. (1996). “The TSP Phase Transition. Artificial Intelligence, 81, 349–358.

    Article  Google Scholar 

  9. Giordana, A. and Saitta L. (2000). “Phase Transitions in Relational Learning”. Machine Learning, In press.

    Google Scholar 

  10. Prosser, P. (1996). “An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems”. Artificial Intelligence, 81, 81–110.

    Article  MathSciNet  Google Scholar 

  11. Dietterich, T. and R. Michalski, Inductive Learning of Structural Description. Artificial Intelligence, 1981. 16: p. 257–294.

    MathSciNet  Google Scholar 

  12. Giordana A., Neri F., Saitta L., and Botta M. (1998). “Integrating Multiple Learning Strategies in First Order Logics”. Machine Learning, 27, 221–226.

    Google Scholar 

  13. Muggleton S. (Ed.) (1992). Inductive Logic Programming, Academic Press, London. UK.

    MATH  Google Scholar 

  14. Giordana, A., Saitta L., Sebag M., and Botta M (2000). “Concept Generalization as Search in a Critical Region”. In Proc. Int. Conf. on Machine Learning. Stanford,US: MorganKaufmann.

    Google Scholar 

  15. Giunchiglia, F. and T. Walsh (1992). “A Theory of Abstraction”. Artificial Intelligence, 56, 323–390.

    Google Scholar 

  16. Williams, C.P. and Hogg T. (1994). “Exploiting the Deep Structure of Constraint Problems”. Artificial Intelligence, 70, 73–117.

    Article  MATH  Google Scholar 

  17. Botta, M., Giordana A. and Saitta L. (1999). “Relational Learning: Hard Problems and Phase Transitions”. In Proc. 16th Int. Joint Conf. on Artificial Intelligence. Stockholm,Sweden.

    Google Scholar 

  18. Saitta, L. and Zucker J.-D. (1998). “Semantic Abstraction for Concept Representation and Learning”. In Symposium on Abstraction, Reformulation and Approximation (SARA’98), Asilomar Conference Center, Pacific Grove,California.

    Google Scholar 

  19. Nayak, P. and A. Levy (1995). “A Semantic Theory of Abstraction”. In Proc. IJCAI-95.

    Google Scholar 

  20. Imielinski, T. (1987). “Domain Abstraction and Limited Reasoning”, In Proc. Int. Joint Conf. on Artificial Intelligence (Milano, Italy, 1987), pp. 997–1003.

    Google Scholar 

  21. Plaisted, D., Theorem Proving with Abstraction. Artificial Intelligence, 1981. 16: p. 47–108.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang W., and Korf R.E. (1996). “A Study of Complexity Transition on the Asymmetric Travelling Salesman Problem”. Artificial Intelligence, 81, 223–239.

    Article  MathSciNet  Google Scholar 

  23. Zucker J-D. (1996). “Representation Changes for Efficient Learning in Structural Domains”. In Proc. 13 th Int. Conf. on Machine Learning (Bari, Italy), pp. 543–551.

    Google Scholar 

  24. Quinlan R. (1990). “Learning Logical Definitions from Relations”, Machine Learning, 5, 239–266.

    Google Scholar 

  25. Giordana A., Roverso D., and Saitta L. (1991). “Abstracting Background Knowledge for Concept Learning” In Proc. EWSL-91, Porto, Portugal.

    Google Scholar 

  26. Giordana, A. and Saitta L. (1990). “Abstraction: A General Framework for Learning”. In AAAI Workshop on Automated Generation of Approximations and Abstraction. Boston, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saitta, L., Zucker, JD. (2000). Abstraction and Phase Transitions in Relational Learning. In: Choueiry, B.Y., Walsh, T. (eds) Abstraction, Reformulation, and Approximation. SARA 2000. Lecture Notes in Computer Science(), vol 1864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44914-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44914-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67839-7

  • Online ISBN: 978-3-540-44914-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics