Similar content being viewed by others
References
T. K. S. Kumar. Reinterpretation of Causal Order Graphs towards Effective Explanation Generation Using Compositional Modeling. Proceedings of the Fourteenth International Workshop on Qualitative Reasoning, 2000.
T. K. S. Kumar. A Compositional Approach to Causality. Proceedings of the Symposium on Abstraction, Reformulation and Approximation, 2000. Lecture Notes in Artificial Intelligence.
B. Falkenhainer and K. Forbus. Compositional Modeling: Finding the Right Model for the Job. Artificial Intelligence, 51:95–143, 1991.
D. Koller and A. Pfeffer. Object Oriented Bayesian Networks. Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), pages 302–313. 1997.
Y. Iwasaki and H. Simon. Causality in Device Behavior. Artificial Intelligence, 29:3–32, 1986.
Y. Iwasaki and C. M. Low. Model Generation and Simulation of Device Behavior with Continuous and Discrete Changes. Intelligent Systems Engineering, 1993.
T. R. Gruber and P. O. Gautier. Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach. IJCAI-93, 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar, T.K.S. (2000). Synergy between Compositional Modeling and Bayesian Networks. In: Choueiry, B.Y., Walsh, T. (eds) Abstraction, Reformulation, and Approximation. SARA 2000. Lecture Notes in Computer Science(), vol 1864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44914-0_26
Download citation
DOI: https://doi.org/10.1007/3-540-44914-0_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67839-7
Online ISBN: 978-3-540-44914-0
eBook Packages: Springer Book Archive