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Abstract. We consider the problem of scheduling of n independent jobs
on m unrelated machines to minimize the max(t1,t2,...,tm), t; being
the completion time of machine 4. In [I] was suggested a polynomial 2-
approximation algorithm for this problem. It was also proved that there
can exist no polynomial 1.5-approximation algorithm unless P = NP.
Here we improve this earlier performance bound 2 to 2— -1 In [1] is also
proved a general rounding theorem, which allows to construct in polyno-
mial time 1-job approximations to the optimum, i.e. schedules with an
absolute bound equal to the largest job processing time. We also improve
this result and obtain (1 — %)—job approximation to optimal.

Keywords: approximation algorithm, distribution, independent jobs,
unrelated processors, makespan

1 Introduction

In this paper we consider one of the classical scheduling problems. We are given
n tasks and m unrelated parallel processors. The processing time of a task on
a processor is an arbitrary real number, quite independent from the processing
time of any other task on that processor and from the processing time of this
task on any other processor (this is in contrast with the situation with identical
or uniform processors, when task processing times are more restricted). No task
preemption is allowed, each machine can process at most one task at a time
and we wish to minimize max(¢1,ta,...,tm), t; being the completion time of
machine i. Even is m = 2 and the processors are identical, the problem is N P-
hard [2]. Hence, no polynomial algorithm can build an optimal schedule for
m > 2 processors, unless P # NP, and we try to approximate the optimum in
polynomial time. For a given schedule, the optimality (or performance) ratio is
defined as the ratio of the makespan of this schedule to the optimal makespan.
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A schedule with the optimality ratio k is called k-optimal. An algorithm with
the worst-case optimality ratio k is called a k-approzimation algorithm.

If the processors are identical, then a linear time list scheduling algorithm
which works with arbitrary precedence relations, gives a worst-case ratio 2 — %
([3]). An O(nlogn) MULTIFIT algorithm gives the optimality ratio for identical
processors 13/11 and for uniform processors < 7/5 (see [4], [5], [6]). Polynomial
approximation schemes for uniform processors (the family of polynomial algo-
rithms with optimality ratios arbitrary close to 1) were first suggested in [7].

With unrelated processors, a much weaker approximability results are known.
The approximation scheme proposed in [§] is polynomial by n but non-polynomial
by m. This algorithm with the optimality ratio 1 + ¢ has time complexity
O(n?™/e) and its space complexity is non-polynomial. For fixed m, i.e., when m
is not an input on the problem, there is a liner by n polynomial approximation
scheme by Jansen and Porkolab [17]. For non-fixed m, the first polynomial-
time approximation algorithms for unrelated processors were proposed in [9]
with the optimality ratio m. This result was essentially improved in [10] where
polynomial-time algorithms with optimality ratio within 2,/m were proposed.
Breakthrough in the area was due to [1] in which a polynomial algorithm with
optimality ratio 2 was proposed. It was also proved that there can exist no po-
lynomial algorithm with optimality ratio 3/2 or less, unless P = N P. This work
was preceded by the paper [T1], in which first was brought into the play the
linear programming for this problem and produced an efficient but still non-
polynomial by m algorithm with optimality ratio 2. For a more detailed survey
of the approximability results see [I§].

In this paper, relying on the results from [I], we present an improved polyno-
mial algorithm for unrelated processors with the Graham’s performance bound
for identical processors, i.e., with the worst-case ratio 2 — % This is the best
result so far for m > 2. For m = 2, a linear time algorithm from [I1] gives the
similar result.

An absolute error estimates the quality of a schedule in absolute terms and
is the difference between the makespan of this schedule and an optimal one. The
rounding theorem from [1] provides with polynomial algorithms which construct
schedules with an absolute error equal to the maximal job processing time py, 4 -
We improve this result as well presenting a polynomial algorithm with an ab-
solute error %pmax. A similar result for identical processors was obtained in

[12] in Theorem 1.2.

2 Preliminaries

In this section, we introduce the basic concepts and notations. A schedule assigns
each task a processor, and also starting time on that processor, while a distribu-
tion deals only with the assignment of tasks to processors, but doesn’t care about
starting times of tasks on the assigned processors. In fact, the literature contains
a number of results on distributions, we will mention some of them. Explicitly
this concept has appeared for non-preemptive case under different names. For
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example, in [12] it is used the term partition, and in [10] it is used assignment.
For preemptive case we will use the term distribution which seems to us more
adequate.

For job J and processor M, let us denote by M (J) the time, which takes the

complete execution of J on M, and by M, (J) we denote the time, during which

J is processed by M in the schedule o. AJ{;((L',])) is the part of J scheduled in ¢ on

M (if preemptions are allowed, then this ratio can be any real number from the
interval [0,1], and without preemptions we can have only Os and 1s).

Every (preemptive or non-preemptive) schedule o defines its corresponding
distribution. The distribution J, associated with schedule ¢ is a function which
assigns to each pair J, M the value 0,(J, M) = Z]V[\/[“(E,J)) < 1. For every job J,
scheduled in o, we have > §,(J, M) = 1, where the sum is taken over all machines

M

in o.

The concept of distribution may be introduced and investigated indepen-
dently of the concept of schedule. This concept is simpler. We introduce more
formal definitions. For the convenience, let us assume that all possible jobs con-
stitute an universal set of jobs which we denote by JOBS. This set might be
finite or infinite, but all schedules and distributions are defined only on finite sub-
sets of JOBS. The processors or machines are defined as functions from JOBS
to nonnegative real numbers RT. If M is a processor and J is a job, M(J) is
the time needed to execute J on M. The set of all processors is denoted by
PROC. A multiprocessor or a processor system is a finite linearly ordered set of
processors denoted by M = {M;, My, M3, ... M,,}. A multiprocessor consisting
of m processors is called m-multiprocessor. A job system is a linearly ordered
finite set of jobs J = {J1,J2,...Jn}. A job system with n jobs is called n-job
system.

A distribution is a function §: JOBS x PROC — R™, such that for every
job J, > 46(J,M) is 0 or 1. Again, §(J, M) is the part of job J assigned to
MeMm

machine M. The jobs, for which this sum takes value 1 are called distributed in
6 or §-distributed, and the rest of the jobs are called non-distributed. The set of
all d-distributed jobs is denoted by JOBS(9). If §(J, M) > 0 we will say that
job J is §-distributed on the machine M (or the machine M is d-occupied by J).
We denote by 6(J) the set of all machines on which job J in ¢ is distributed.
The set of all §-occupied machines is denoted by PROC(J). We will say that a
distribution § distributes a job system J on a multiprocessor M if 7 = JOBS(9)
and PROC(d) C M.

Let us note that a convex combination of two distributions, (i.e. pd + (1 —
p)d’, 1 > p > 0) is a distribution. The sum of two distributions ¢ and ¢’ is a
distribution iff JOBS(6)NJOBS(§") = 0. We will call such distributions disjoint.
If inequality §(J, M) < ¢’(J, M) holds for all J, M, then we will write § C ¢’ and
say that § is a sub-distribution of §’, and ¢’ is an extension of distribution §. In
this case, as it easy to see, JOBS(§) C JOBS(¢") and 6(J, M) = ¢§'(J, M) for
any M and J-distributed job J.
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Ms(J) = 6(J,M)M(J) is the time needed for machine M to execute the
assigned to it in § part of job J. Y My(J) is called the load time of machine
JeJg

M in distribution ¢ and is denoted by |§]as. The load time of machine |o|ys in a
schedule o is its load time in the associated distribution, so |o|yp = >, M, (J).
JeJ

Let us call the maximal load time of a machines in a distribution § its makespan
and denote it by |§|max. The makespan of a schedule o will be also denoted by
|U|max-

The distribution § is optimal if it has the minimal makespan among all dis-
tributions which distribute the same set of jobs on the same multiprocessor. The
problem of constructing of an optimal distribution is equivalent to the following
linear programming problem:

Minimize Dopt
n m
E mi’jtm < Dopta E T35 = 1, 1= 1,...,n j = 1, ceeMmy Ty >0
i=1 j=1

To see this equivalence, we let ¢; ; = M;(J;), z;; = 6(J;, M;). For further refe-
rences, we abbreviate this linear programming problem by LP(Dqpt).

Construction of an optimal schedule can be split into two stages. On the first
stage we construct an optimal distribution, and on the second stage we construct
an optimal schedule with this distribution. If the distribution is non-preemptive,
the second stage is trivial. The problem of construction of an optimal schedule,
associated with the given distribution, was thoroughly investigated in [13]. The
concept of an open shop, introduced in this paper, is almost the same as that
of a distribution. Let § be a distribution of J on M. Then one can interpret
every J € J as a job consisting of m subtasks, where task number ¢ has to be
performed on processor M; and its execution takes the time (M;)s(J). In this
way every distribution generate an open shop and vice-versa.

Unfortunately, not every preemptive distribution has an associated schedule
with the same makespan. The processing time |§|7 of a job J in a distribution §
is defined as the total time during which this job is processed on all machines,
i.e. |6]7 =S Ms(J). Let us denote by |6|™** the maximum of |5]7. So |§|™a* is

M

the largest processing time in . Since each job has to be performed sequentially,
i.e., a job cannot be processed at any moment by more than one machine, the
makespan of every schedule ¢ associated with a given distribution § cannot
be less than |§|™**. Let us call the sequential makespan of a distribution the
maximum between |§|max and |6|™**. We see that the makespan of every schedule
associated with a given distribution cannot exceed its sequential makespan. Now,
a principal result from [13] can be formulated as follows.

Theorem Gonzales and Sahni [I3]) There exists a polynomial algorithm
which constructs for every distribution an associated schedule with makespan
equal to the sequential makespan of this distribution.
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Based on this theorem, in [14] the problem of constructing of an optimal
preemptive schedule is reduced to the following linear programming problem
LP(SOpt)Z

Minimize Sopt,

n m
Z%,jti,j < Sopt in,jti,j < Sopts Tij =0,

i=1 j=1

n
E ;=1 i=1,...,n, j=1,...,m
i=1

Any solution of this problem gives a distribution with the minimal sequential
makespan.

3 Previous Results on Rounding

Thus the construction of an optimal preemptive distribution is polynomially
solvable in opposite to the non-preemptive case, which is a subject of our study.
Let us first give the rounding approach, first applied in [I1] and later essentially
improved in [I]. This approach allows us to produce good approximation to an
optimal non-preemptive schedule.

For a real z, let [z] and {z} be its integral and fractional parts, respectively
(we note that we use {.} for representation of sets as well). So x = [z] + {z}, [z]
is integer and 0 < {z} < 1. [§(J, M)] and {§(J, M)} define distributions [§] and
{6}, which we will call the integral and the fractional parts, of 0, respectively;
clearly, [0] and {d} are disjoint. A distribution is integral or non-preemptive if
its fractional part is 0, and in this case it coincides with its integral part. Jobs
distributed by {d} are said to be preempted in §. An integral distribution § is a
rounding of another distribution ¢’ if it distributes the same jobs and § = [¢'].
So ¢ = 6 + &g, where 69 = {¢'}.

To find a non-preemptive distribution, close to an optimal one, the rounding
method looks for an optimal ezxtremal preemptive distribution and rounds it.
A distribution § is eztremal if it cannot be represented in the form (8" 4 §”),
where 4’ and §” are different distributions, such that for every machine M,
|0'ar = 18" |am = |6|ar. The importance of extremal distributions shows the
following

Extremality Principle. All distributions constructed by linear programming
solution of LP(Dopt) are extremal.

Proof. Denote by A the set of all distributions of an n-job system J on an m-
multiprocessor M. This set represents a convex (possibly unbounded) polytope
in space R™™. In LP(Dypy), consider a subset A’ of product R™" x R defined
by conditions A’ = {(6,D) | § € A, D € R, |§|max < D}.

If 6 = 1(01 + 62) where |6]p = [01]ar = [02]ar for all machines M, then
(6,D) € A’ implies (§;,D) € A’ for i = 1,2. Hence, (§, D) is a middle point
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of (01, D) and (d2, D), and therefore is not a vertex of A’. But the linear pro-
gramming works only with vertices of A’. Hence they work only with extremal
distributions.

The rounding method is based on the following known principle (see [15],
[11], [T]), which will be proved the next section.

The Preemption Bounding Principle. If § is an extremal distribution
on a multiprocessor M = {My ... My, }, then the number of jobs in JOBS({d})
(i.e., preempted jobs in §) is less than m.

Let us remark that for an integral distribution ¢, 6(J) represents a unique
machine. Let us say that an integral distribution 6 is 1 — 1 if 6(J) # 6(J’) for
every d-distributed jobs J and J’. Since the number of preempted jobs in an
extremal distribution does not exceed the number of machines (see the Preemp-
tion Bounding Principle), we can accomplish a 1 — 1 rounding, i.e., to find a
distribution ¢’, for which 6’ — § is a 1 — 1 distribution. In particular, applying
1 — 1 rounding to an optimal extremal distribution, we immediately obtain the
following result (pmaq. below is the maximal task processing time):

A 1-job Approximation Theorem. It is possible to construct a distribu-
tion with the makespan, exceeding the optimal makespan by no more than pmax
in polynomial time.

As we will see below, even an optimal 1 — 1 rounding can be accomplished
in polynomial time. Let us define the selection problem as follows. We say that
a given family of subsets {X;}i=1,.. 1, of a set X is selectable if there exist such
sequence of point z1, ...z € X (called selection), that x; € X; for all 4 < k and
all z; are distinct.

This selection problem can be easily solved via the complete matching pro-
blem in a bipartite graph {V7, Vo, E'}, with vertices V; = X and Vo = {1, 2, ...k},
where pair x,1 is an edge iff z € X;. This matching problem is known to be po-
lynomially solvable via the maximal flow algorithm.

Due to the Hall’s Marriage Theorem (see, for example [16]), our selection
problem has no solution (i.e., there is no complete matching) iff there exists a
subset Y C X with the number of elements, less than the number of elements in
the specially defined subset of V5. In particular, this subset contains an element
[ € V4 iff there exists y € Y, such that y € X.

Lemma 1. Let J be an n-job system, M be an m-multiprocessor, m > n and
{ci}i<n be real numbers. Then it is possible to construct in polynomial time a
1 —1 distribution § of J on M, such that |6|p, < ¢; for all i, or to prove that
such distribution does not exist.

Proof. For every job J let M(J) ={M € M | M;(J) < ¢;}. The constriction of
1 — 1 distribution with |§|ps, < ¢; is equivalent to the selection problem for the
family M(J).

This lemma with lemma 1 in [I] gives us the following:
Theorem 1. Let J be an n-job system, and M be an m-multiprocessor, such

that n < m. Then the optimal 1 — 1 -rounding can be constructed in polynomial
time.
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4 Acyclicity of Distributions

In [1] it is considered an optimization problem for the distributions with the ad-
ditional restrictions, which forbid some jobs to be distributed on some machines.
The linear programming problem corresponding to this restricted optimization
problem can be obtained from LP(Dqpt) if some inequalities of the type z;; > 0
are changed to the equalities x;; = 0 (2;; = 0 eliminates the possibility of distri-
bution of any part of ith job to jth machine). The Extremality Principle from
Section 3 also holds for this problem; the proof of this fact is similar to that of
Section 3.

To specify a restricted optimization problem, we assign to each job J the set
of machines M ;, the ones, on which it is allowed to distribute J. We shall call
such assignment a job-machine configuration. We will use C to denote the con-
figurations. Formally, a job-machine configuration C is a multi-valued mapping
C: JOBS — PROC. The set of machines, on which job J is distributed in C is
denoted by C(J). We will consider only finite configurations; for some Js, C(J)
might be empty.

A distribution ¢§ is called restricted by configuration C or C-restricted if
0(J) € C(J) for all J € JOBS. The set of C-restricted distributions is con-
vex. A distribution of a job system J with the minimal makespan, among all
C-restricted distributions

For a distribution 4, in [1] the so called configuration graph G(9) is introduced.
G(9) is a bipartite graph {V1, V3, E'}, such that V4 = JOBS(§), Vo2 = PROC(9)
and there is an edge, corresponding to the pair J, M in G(§) iff §(J, M) > 0. We
will call a distribution connected if its configuration graph is connected.

A sub-distribution ¢’ of a distribution ¢ is called its component if G(¢') is
component of connectedness of G(§). From the definitions immediately follows

Lemma 2. For different components §; and 0; the respective sets of occupied
machines are disjoint, i.e., PROC(d;) N PROC(d;) = 0.

Lemma 3. Let §, §' and §" be such distributions that PROC(6)NPROC(d') =
PROC(O)NPROC(6") =0 and |§'|pr = 6" |ar for all machines. Then |6'+6|p =
[6" + 0|as for all M.

Lemma 4. If§ = 1(8' 4 0") then 6(J) = §'(J)U 8" (J) for all J.
The proofs are left to the reader.

Lemma 5. A distribution is extremal iff all its components are extremal.

Proof. Suppose § has a non-extremal component dy such that &y = (&) + )
and |do|ar = |64|am = |04 | ar- Then processors occupied in &) and Jj are included
in PROC(dp). Let 61 = § — dg. Then PROC(69) N PROC(6,) = 0. Further, let
0 = (56 + 67 and 8" = (56/ +61. Then 6 = %(6/ + (5”) and |5/|M = |5H‘]V[ = |6|M
for all M. Now the load times are equal because of lemma [3]
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In opposite direction, suppose § is not extremal and consider its representa-
tion § = §(6"446") where |8|5s = |6’|as = [0”|ar for all M. Let J be a job for which
o'(J) # 0”(J) and 09 be a component of ¢ for which J € JOBS(dp). Denote by 4,
and &) restrictions of 6’ and 6" respectively, on JOBS(do). Then &y = % (6(+67)
and to prove the non-extremality of &g it is sufficient to check equality of the
load times. Let M € PROC(dy). As §'(J) C §(J) for all J ¢ JOBS(dp), we
obtain M ¢ ¢'(J). Hence, all jobs distributed by §’ on M belong to JOBS(do)
and are distributed by (. Therefore, |6|ar = [0|as = |00|a- If M ¢ PROC (o),
then for all J € JOBS(60) M ¢ 6(J) and hence M ¢ ¢'(J). This implies that
the load time of M in dj, as well as in dg, is 0. Thus we proved equality of the
load times for (. We use the similar reasoning for d; and the lemma is proved.

Let us say that a distribution § is synchronous over multiprocessor M if
|(5|1u = ‘6|JVI’ for all M,M/ e M.

Lemma 6. A connected C-optimal distribution 0 is synchronous over PROC(C).

Proof. Suppose § is not synchronous and let M be a machine for which |§|max >
|0]as. Consider a machine M’ with the maximal load time. Since G(4) is connec-
ted, there exists a path in it connecting M and M'. Let M = My, J1, My, Js,
...y Myri1 = M’ be such a path and let ¢ be the maximal index, such that
[0|ar; < |0]max- Ji occupies both M; and M;;q. Let us choose £ > 0 so small
that e < §(J;, Mi1) and eM;(J;) + 6(J;, M;) < 1, and define a new distribu-
tion & as follows. &' (J;, M;) = 6(J;, M;) + €, if &' (J;, Mi1) = 6(J;, M;) — e and
0"(J,M) = 6(J, M) for any other job-machine pair.

The obtained distribution §’ contains less machines with the load time |§|mnax,
and has the same configuration graph as §. Repeating the above procedure, we
can construct a distribution with the same configuration as § and with a smaller
makespan. But this contradicts the optimality of §. The lemma is proved.

The number of machines in §(J) minus 1 will be called the number of pre-

emptions of J in 0 and will be denoted by 7s(J). w(§) = > ms(J) is the total
JeT
number of preemptions in 4.

Lemma 7. The total number of preemptions in every connected C-optimal ex-
tremal distribution § is strictly less than the number occupied machines in 9.

Proof. Let  occupy machines My, ... M,, and let Jy, Js, ... Ji be the preempted
jobs in 0. For every i < k, let j(i) be the first j for which M;(J;) is fractional.
Denote by P the set of pairs 4, j, j # j(¢) and such that 0 < M;(J;) < 1. The
number of elements in P is m(d). Let ¢ = min{M;(J;)}¢ jyep. For every real
function f on P, such that |f(i,7)] < e/m, let d7(Ji, M;()) = 0(Js, M) —
> f(4,9), 6p(Jiy M) = 6(Ji, M) + f(i,7) if (4,5) € P, and let 67(J, M) =
Jl(i,5)erP
0(J, M) otherwise. The distribution &y, as it follows from its definition, is C-
restricted. To define a linear mapping [ of a €/m-cube of Euclidean space @
of dimension 7(d) into (m — 1) dimensional space, enumerate pairs in P. Then
each point x € @ corresponds to a real function f, on P, and we can define
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l(z) as a vector in which ith component is [df, |ar, — [0]ar,- If 7(6) > m, then
the kernel of the mapping [ is nontrivial. Let y € @ be a nonzero point for
which [(z) = 0 and let f be the function corresponding to . If |6 ¢|ar,, = |9|as,,.
then |6_¢|ar,, = |0]nm,, and we come to a contradiction with the extremality of
§, because § = 1(6_s + 7). The optimality of & implies that [6¢|ar,, > [0]ns,,-
Indeed, if [0f|as,, < |0|n,,, then 05 is as well optimal, but not synchronous. But
the same reasons applied to d_y gives us the similar inequality [0_ ¢|ar,, > || a1, -
Then we come to a contradiction with § = (6_f + &7). The lemma is proved.

We will call distribution acyclic if its configuration graph is acyclic. Let us
say that a distribution § is componentwise C-optimal if each its component is
C-optimal. Our main result now can be formulated as follows.

m)

Theorem 2. FEvery componentwise optimal and extremal distribution is acyclic.

Proof. If a distribution is connected, then the number of its preemptions is
less than the number of the corresponding occupied machines (by lemma [7).
Hence its configuration graph has less edges than vertices. For a connected graph
this implies the acyclicity. If the distribution is not connected, then consider its
components. They are extremal by lemma/[5. They are as well C-optimal by our
assumption. Hence the same argument shows their acyclicity.

5 Consolidation of Distributions

Let us say that a non-preemptive (integral) distribution § is a consolidation of
a preemptive distribution 4, if it has the same domain and §(J, M) = ¢'(J, M),
for all J which are not preempted in ¢’.

The main result of this section is the following theorem

Theorem 3. For every acyclic distribution § on an m-processor, it is possible

to construct in polynomial time a consolidation 0', such that |§'|max < |0|max +
m—1,_6

m max

The proof is based on some delicate considerations connected with graphs.
Besides the introduced earlier configuration graph from [I], we shall consider
another type of graph for presenting the preemptive structure of the distributi-
ons. We call it a preemption graph and denote it by Ggs. G5 has less nodes and
edges than the corresponding configuration graph.

The nodes of G represent the machines, and edges represent the jobs. There
is an edge in joining a pair of nodes in Gy, if the job which represents this edge
is shared by the machines which represent these nodes. The preemption graph,
in general, is a multi-graph. But if the configuration graph is acyclic, then the
corresponding preemption graph is simple. Indeed, it is sufficient to prove that
0(J1) N é(J2) cannot contain two machines. But if it contains two machines M;
and Mo, then we will have a nontrivial cycle My, Ji, Ma, Jo in G(0).

Preemption graph may have cycles even if configuration graph is acyclic. For
example, if §(J) contains three machines My, My and Ms, then the vertices
corresponding to M;, i = 1,2, 3, form a cycle in Gs.
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A reduced preemption graph G has less edges than Gy has and this graph
is acyclic iff G(0) is acyclic. The structure of G (unlike that of G5 and G(9))
depends not only on the distribution §, but also on the order, in which the ma-
chines are numbered. G is a subgraph of Gy, obtained by deleting the so called
redundant edges in G5. Again, whether an edge is redundant or not, depends on
the order in M. An edge (z,y) € Gs is redundant, if there exist two (or more)
intermediated edges (z, z) and (z,y), such that the index of machine z is more
than that of machine z and less than that of machine y, and all x,y and z share
the same job.

Proposition 1. G is acyclic iff G(0) is acyclic. The number of edges in G5 is
equal to the number of preemptions in the distribution §.

Lemma 8. Let Py, Ps,..., Py be connected subgraphs of an acyclic graph G,
having in common at most one node. Then for some i, the intersection of P;
with UP;j, 7 =1,2,...,k,j # 1, is a single node.

Proof. Let Ni,...Nj be all nodes of G, which are common for some pairs of
our connected subgraphs, and let G’ be the minimal connected subgraph of G
containing all N;s. The acyclicity of G implies the acyclicity of G’. Besides, G’
does not have any single degree node, different from some V. Indeed, if N were
a single degree node in G’ different from any N; then we would reduce G’ by
eliminating N and the corresponding edge.

Let N be a single-degree node of G’ and e be the edge in G’, corresponding to
N. As N = P;N P; for some 1, j, either P; or P;, suppose F;, does not contain e.
Suppose that P; contains a node N; # V. In this case we will have two different
paths between IN; and IV in G. The first such path is contained in P; and does
not pass through e, and the second one is in G’ and passes through e. But then
we would have a cycle in G which is a contradiction. Therefore, the intersection
of P; with the union of the rest of our connected subgraphs is exactly N and the
lemma is proved.

A weight function on the graph G is a function w which assigns to each node
N of G a nonnegative number w(N), and such that the sum of all w(N) is equal
to 1. Let us say that a weight function w is supported by a subgraph P of G if
it takes value 0 for all nodes in G\ P.

Lemma 9. Let G be an acyclic graph with m nodes, Py, P, ..., Py its covering
by connected subgraphs which intersect in more than in one node. Further, let
w1, Wa, - .., Wk, k < m be a weighted function on G such that w; is supported
by P;. Then it is possible in polynomial time to construct a sequence of nodes

S1y...,8k, such that s; € P; for all i, and >, (1 —w;(N)) <1-— %
S,;:N

Proof. Applying the above lemma we can first order subgraphs Pi, Ps,... Py
of our decomposition in such a way that for all i < k, P; intersect the union
P* = U;>;P; in exactly one node, which we denote by N;.
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In the process of construction, we will need to keep an additional information
for every node. An array of nonnegative integers v(N). The algorithm is the
following.

Step 1. (initialization) v(NN) := 0 for all N, j := 0 (counter of cycles)

Step 2. Search for a node M in P;, different from N; and such that

wi(M) >v(M)/m+1/m,

(case 1): if such a node is founded then s; := M
(case 2): otherwise, s; = Ny, v(N;) :==v(N;) + > (v(M)+1)
MeP;\N;
Step 3. if j < k then j:=j+1; goto step 2; else STOP
To prove correctness of this algorithm, first note that > v(M) is no more
MeP?
than the number of nodes in complement to P?, for all stages in our construction.

Indeed, from P~! to P* we increase Y. wv(M) exactly by the number of the
MeG’
deleted nodes from P;, or we do not change it at all.

The algorithm works without stopping up to the last step. When we choose
s there is no Ni. So we have to find an M satisfying inequality wg(M) >
v(M)/m + 1/m. Suppose that there is no such M. In this case, for all M we
have wi (M) < v(M)/m + 1/m. If we sum these inequalities, for all M € Py, we
obtain 1 < L 3" (v(M)+1). But > (v(M)+1) as already noted, does not exceed
m and we came to a contradiction.

Let us note that if s; is different from N;, then w;(M) > v(M)/m+1/m and
this point cannot be chosen in the sequel. On the other hand, during the whole
process, for all i we have that

Y (- wi(N) < v(N)/m,

jisj=N

because v(N) is increased only when N = N; is selected, for some P;, and it

is increased by Y. (v(M) + 1). But the condition of selection of N; is that
MEP\N

wi (M) < v(M)/m+1/m for all M € P;. And sums of these inequalities provide

desired results. To finish our prove it is sufficient to note that v(N) < m —1 for

all N.

Proof of Theorem [3] Let G be a reduced preemption graph of fractional
part of our distribution. This graph is subgraph of G and therefore is acyclic.
Let Ji,...Jg be all jobs preempted in §. For every job J; denote by P; the
subgraph which edges correspond to J;. For every node M of this subgraph, let
w;(M) = 6(J;, M). Then we obtain decomposition {P;} of G and the system
of weights. By lemma [9] we choose for each job .J;, a machine M (). Now we
define ¢'(J;, M (i)) = 1 for all i. This completely defines this consolidation. The
increase of the load time on machine M in ¢’ compared with that in § is equal
to Y. (1 —=68(Ji, M))M(J;). As M(J;) < pS .y for all 4, this sum does not

&M (i)=M
exceed (1 — L)p? ... The theorem is proved.
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6 The Worst-Case Bounds

As a simple consequence of the acyclicity and consolidation theorems, we build
the approximation algorithms in this section.

Given a configuration C and job system 7, construct by the linear program-
ming a C-optimal distribution ¢ of 7. Decompose it into components § = > §;.
For all 4, construct by linear programming extremal C-optimal distributions §] of
JOBS(4;). Then the sum Y 8. represents an extremal componentwise C-optimal
distribution of 7. This distribution will be acyclic owing to the Acyclicity Theo-
rem. Now applying consolidation algorithm of Theorem [B] we obtain a distribu-
tion which properties are given in the next theorem. Denote by p<,. maximum
of M(J), where M € C(J), and denote by DS, the makespan of C-optimal
distribution of 7.

Theorem 4. For every job system J and every configuration C it is possible to
construct in polynomial time an integral distribution §, such that

c m—1 ¢
|6|max < Dopt + Tpmax

If we consider a constant configuration, i.e., a configuration C, such that
C(J) =M for all J € J, then, from the above theorem, we immediately obtain
the following improved version of the 1-job approximation theorem.

Corollary 1. There is a polynomial algorithm which constructs an integral dis-
tribution of a job system J on a multiprocessor M with a makespan, exceeding
the optimal one by no more than ’”T_lpmax.

Now we find it useful to recall some basic ideas behind the earlier mentio-
ned polynomial 2-approximation algorithm from reference [1]. One of the useful
concepts, introduced in [1I] was what we call the balanced distribution, a dis-
tribution, in which the jobs cannot be distributed on the machines, on which
their execution time is “sufficiently large”. More precisely, for a distribution 4,
let us denote by p? .. the maximum of {M(J) | §(J,M) > 0} and call it the
5-largest processing time. Let us say that for some B € R' § is B-balanced, if
|6|lmax < B and pS,.. < B. Denote by B,y the minimum B for which there
exist a B-balanced distribution. Note that Doy < Bopt < D°P'. Indeed, every
non-preemptive distribution ¢ is auto-balanced (that is |§|max-balanced) and this
implies that Bop, < D°Pt. We call an optimally balanced distribution a distribu-
tion which is Bop¢-balanced. Bopt, can be found in polynomial time as it is shown
in [1].

In the polynomial 2-approximation algorithm from [I], first an optimally ba-
lanced extremal distribution ¢ is constructed and then consolidated. An integral
distribution § is a consolidation of a distribution ¢’, if § and ¢’ distribute the
same job system J on the same multiprocessor M and §(J, M) = &'(J, M)
provided by integrality of §(J, M). Consolidation is a special sort of rounding.
To build a consolidation from a given distribution, for each preempted job in
this distribution a single machine is determined and the job is completely placed
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(scheduled) on that machine. If ¢’ is a consolidation of a B-balanced distribution
3, then |8’ |max < |dmax + B. Hence, a consolidation of an optimally balanced
distribution has the makespan < 2B, < 2D°Pt.

An ingenious trick is developed in [I] to consolidate an B-balanced distri-
bution obtained by linear programming. This consolidation is produced by a
matching in the corresponding configuration graph and is 1 — 1. That is different
preempted jobs occupy in consolidation different machines. This trick is based on
the analysis of structure of the consolidation graph of the above distribution. It
is proved that this graph is a pseudo-forest i.e., a graph with its all components
having the edges no more than the nodes.

Let us denote by B°P' the minimal possible makespan of auto-balanced dis-
tributions. Auto-balanced distribution with such makespan call optimal auto-
balanced. This distribution is extremal and hence acyclic. That is for such dis-
tributions the configuration graph is a forest. As easy to see By, < BP' < DOPL,
The same argument as presented in [I] show that B°P! is calculable in polyno-
mial time. This B°P' represents a best known polynomially calculable lower
estimation for DOPt,

The consolidation applied to the optimal auto-balanced distribution (which
is not in general 1-1) gives a 2 — %—approximation to optimum.

Theorem 5. For every given configuration, a non-preemptive distribution with
optimality ratio 2 — 1/m can be constructed in polynomial time.

Given a configuration C, construct by the linear programming a C-optimal
extremal distribution d. This distribution is acyclic

Theorem 6. There is a polynomial algorithm which constructs a schedule o
with makespan exceeding an optimal schedule by no more than WT_lpmax,
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