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Abstract. In the framework of the Blum-Shub-Smale real number mo-
del [3], we study the algebraic complezity of the integer linear program-
ming problem (ILPg) : Given a matrix A € R™*™ and vectors b € R™,
d € R", decide whether there is x € Z" such that Az < b, where
0 < z < d. The main contributions of the paper are the following;:

- An O (mlog||d||) algorithm for ILPg, when the value of n is fixed. As
a corollary, we obtain under the same restriction a tight algebraic com-
plexity bound © (log ﬁ% Gmin = min{ai,...,an}, for the knapsack
problem (KPgr) : Given a € R}, decide whether there is © € Z™ such
that o’z = 1. We achieve these results in particular through a careful
analysis of the algebraic complexity of the Lovasz’ basis reduction algo-
rithm and the Kannan-Bachem’s Hermite normal form algorithm, which
may be of interest in its own.

-An O (mn5 logn (n + log Hd||)) depth algebraic decision tree for ILPR,
for every m and n.

- A new lower bound for 0/1 KPr. More precisely, no algorithm can
solve 0/1 KPg in o (nlogn) f(a1,...,a,) time, even if f is an arbitrary
continuous function of n variables. This result appears as an alternative
to the well-known Ben-Or’s bound 2(n?) [I] and is independent upon it.
Keywords: Algebraic complexity, Complexity bounds, Integer program-
ming, Knapsack problem

1 Introduction

We study the algebraic complezity of the following integer linear programming
(ILP) problem:

(ILPr) Given a matrix A € R™*" and vectors b € R™,d € R",
decide whether there is x € Z™ such that Az < b, where 0 < z < d.

The input entries are arbitrary real numbers and, accordingly, the adopted model
of computation is a real number model. This kind of model has been traditionally
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used in scientific computing, computational geometry, and (although not expli-
citly) numerical analysis (see, e.g., [18[19122]). In our study we conform mainly
to the model presented in [3], known as the BSS-model (named after its creators
Blum, Shub and Smale). In the BSS-model, the assumption is that all the real
numbers in the input have unit size, and the basic algebraic operations +, —, *, /
and the relation < are executable at unit cost. Thus the algebraic complexity
of a computation on a problem instance is the number of operations and bran-
chings performed to solve the instance. For more details on the BSS-model and
complexity theory over arbitrary rings, we refer to [3]. We notice that in this
new theory, aimed at providing a complexity framework for disciplines like those
mentioned above, an important issue is seen in the comparison of results over
the reals with classical results over the integers, which may help elucidate some
fundamental concepts, like computability and complexity.

At this point it is important to mention that the requirement for bounded
domain (i.e., 0 < z < d) is essential and dictated by the very nature of the
problem, namely by the fact that the coefficients may be irrational numbers. In
such a case, a problem with unbounded domain may be, in general, undecidable,
as shown in [4].

In a classical setting, integer linear programming with integer or rational
inputs is among the best-studied combinatorial problems. A substantial body
of literature, impossible to report here, has been developed on the subject. In
particular, it is well-known that ILP is NP-complete [8]. Comparatively less is
known about the complexity of ILPgr in the framework of the BSS-model. Some
related results are reported in [BITT7I7/4]. In [2] Blum et al. pose the problem
of studying the complexity of an important special case of ILPgr, known as the
“real” knapsack problem:

(KPr) Given a € R}, decide if there is 2 € Z™ such that a”z = 1.

With the present paper we take a step towards determining ILPRr’s and
KPgr’s complexity. Our main contributions are the following.

1. An O (mlog||d||) algorithm for ILPg when the value of n is fixed (Section
2).
A similar result is known for the integer case, namely, the well-known Len-
stra’s algorithm for ILP of a fixed dimension n [12]. Our algorithm consists
of two stages: a reduction of the given real input to an integer input de-
termining the same admissible set, followed by an application of Lenstra’s
algorithm. The first stage involves simultaneous Diophantine approxima-
tion techniques, while the second employs two well-known algorithms: the
Lovéasz’ basis reduction algorithm [I3] and the Kannan-Bachem’s Hermite
normal form algorithm [I0]. It is straightforward to obtain an upper time
complexity bound that is quadratic in log||d||. Our more detailed analysis
reveals that the actual complexity of the latter two algorithms (and, as a
consequence, of the entire algorithm) is linear in log ||d||.
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Applied to the knapsack problem KPg of fixed dimension n, our algorithm
1

Qmin

has complexity O (log ), Gmin = min{as,...,a,}, and turns out to be

optimal.

In view of the fact that the Lovész’ basis reduction algorithm and the
Kannan-Bachem’s Hermite normal form algorithm are fundamental and very
important combinatorial algorithms, we believe that their algebraic comple-
xity analysis within the BSS-model may be of interest in its own.

2. An O (mn®logn (n+log||d||)) depth algebraic decision tree for ILPg, for
every m and n (i.e., in a model which is nonuniform with respect to them)
(Section 3).

This result is in the spirit of the well-known Meyer auf der Heide’s n*logn+
O (n®) depth linear decision tree for 0/1 KPg (i.e., KPr with z € {0,1}" )
[14].

3. A new lower bound for 0/1 KPr. More precisely, no algorithm can solve 0/1
KPg in o(nlogn) f (a1,...,a,) time, even if f is an arbitrary continuous
function of n variables (Section 4).

This result appears as an alternative to the well-known Ben-Or’s bound
2(n?) [1] and is independent upon it, in the sense that neither of both
results is superior to or implies the other.

2 Analysis of the Basic Algorithms

In this section, we analyze the Lovész lattice basis reduction algorithm [I3] and
the Kannan and Bachem’s Hermite normal form algorithm [I0]. It is well-known
that these are polynomial within the classical computational model. This implies
that, within the BSS model, they are polynomial with respect to the dimensions
m and n of the input matrices and the maximal bit-size S of their integer (or
rational) entries. Our deeper analysis shows that they are linear in S.

2.1 Some Useful Facts

In this section, we state some simple facts about vectors and matrices with ratio-
nal entries of bit-size at most S. Although trivial, these facts will be instrumental
in analyzing the algorithms in the next sections.

1. Let a be a non-zero rational number. Then 1 /25 < |a| < 25.

2. Let by, bs be non-orthogonal n-dimensional rational vectors. Then 1 / 22n8 <
|<b1, b2>| S TLQZS.

3. Let B be a non-singular n x n rational matrix. Then 1/2”25 <|det (B)| <
nl2ns,
4. Let B; be an n X ¢ rational matrix of rank ¢, ¢ < n. Then 1/22”23

|det (BT B)| < nl2n(een+25),

IN
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2.2 Lovasz Lattice Basis Reduction Algorithm

In the description and analysis of the algorithm we follow [9]. The input consists
of linearly independent vectors by, bs,...b, € Q", considered as a basis for a
lattice L. The algorithm transforms them iteratively. At the end, they form a
basis for L which is reduced in the Lovézs sense.

First we recall some definitions, then describe the Lovéasz lattice basis re-
duction algorithm, itself. With a basis b1, b, . .. b,, we associate the orthogonal
system b7, b3,...b),, where b} is the component of b; which is orthogonal to
b1,ba,...b;—1. The vectors by, b3, ...b;, can be computed by Gram-Schmidt or-
thogonalization:

bt = by,

bf =b;, — Z 1/%,ij7 2<i<n,

where 11, ; = (b;, b%) /Hb*

19 7
The basis by, bs, ... b, is size-reduced if all |p; ;| < % Given an arbitrary
basis by, bo,...b,, we can transform it into a size-reduced basis with the same
Gram-Schmidt orthogonal system, as follows:

For every ¢ from 2 to n; For every j from i — 1 to 1;
Set b; := b; — [p; ;] b; and update p;x for 1 < k < ¢ — 1, by setting p; 5 =
pike = [ g ] g k-

Now, we can describe a variant of the Lovész lattice basis reduction algo-
rithm.

1. Initiation. Compute the Gram-Schmidt quantities p; ; and bf for 1 < j <
1 < n. Size-reduce the basis.
2. Termination condition. If ||b*|| <2 ||bl+1’| for 1 <¢ <n—1, then stop.

3. Ezchange step. Choose the smallest i such that [|b*|* > 2 ([ H . Exchange
b; and b;;1. Update the Gram-Schmidt quantities. Size-reduce the basis. Go
to 2.

For completeness, we give formulae for updating the Gram-Schmidt quantities
in step 3:

||b*Hnew = ‘ z+1H +/’(‘7.+1 i Hb*”
[ e T Y A
ety = niera 10717 /1651,

new . .
Pg )= (HH9 ) for1<j<i—1
MH—L] :uh]

new new P
(Mf{:w ) = (éﬂi?”> (?_ ! ) < i ) fori+2<j<n.
Hjit1 Hit+1,i Hjit+1

The other [|b}|*’s and ;s do not change.

After termination of the above algorithm, we have a size-reduced basis for
which ||b?]? i1l 1 <@ < n—1. We call such a basis reduced in the
Lovdsz sense. (There are other definitions of this concept in the literature, but
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for our purposes they are essentially equivalent.) Important properties of such a
basis are
n—1
Ib1]] < 272 ||(shortest vector in L),

and
H 4]

Let us analyze the running time of steps 2 and 3. Consider the function

(L) (1)

F (b5, by) : H\lb*IIQ(" )= Hdet (BI'By),

=1

where B; is a matrix having by,bs,...b; as column vectors. No size-reduction
operation changes F', as it does not change the ||bf||’s. After an exchange step,
we obtain

Foew ||b*H ||bz+1|| +U12+1,i ||b;k||2

1'L€LU
= = <

3
« w12 VN (2)
F Io71* 165 1 4

It is not hard to see that every iteration of steps (2-3) consists of O (nQ) basic
arithmetic operations (because of the size-reduction, an updating needs only
O (n) such operations). The only problem might be the rounding operations [. ]
performed during the size-reductions. We observe that the absolute values of
their arguments are at most O (nuf¢Y;). Then the time needed for one such an

operation is

0 (logn +log u2it) = O (logn -+ log (1671 /11512,..)) ) -

Fe))

((#zteratzons) n?logn + n?log Eta:&) 3

Thus, the time complexity of one iteration is

0 (n? (1ogn -+ 1og (1651 /112..) )) = O (2 (101 + o

Then the time complexity of all iterations is

Because of [), the number of iterations is O (log %L“;t), so that the overall
complexity of steps 2 and 3 is

FS ar
0 <n2 logn log Ft t>. (4)

end

What remains is to estimate the running time of step 1 and the ratio iﬁ‘“; L,



Complexity of Integer Programming within the BSS Model 291

By definition, y; ; (1 < j < i —1) can be considered as a solution of the
following linear system

(b1,b1) (b1,bi—1) i (b1,b;)

(bi—1,b1) (bi—1,bi—1) Hii—1 (bi—1,b;)

for 2 < i < n. From here and fact 4 from Section 2.1, it is not difficult to

deduce that before the size-reduction phase of step 1, ||u; ;] < 20(57%)  The
size-reduction itself takes O (nQ) [.] operations on these numbers, so that the
time complexity of step 1 is clearly O (S’n4).

Lastly, we need to estimate Fgqr¢ and Feng. Fsart is a product of the deter-
minants of n — 1 matrices BiTBi where 1 <7 <n —1, so that

‘Fstart| < 2O(n2(10g n+S’)) )

To estimate F,4, let us observe that any of the vectors b4, b§"? ... b is an
integer linear combination of bste" pstart . pstart Therefore, for 1 <i < n, we
have B¢ = B3tat A, where A; is an n x i integer matrix. This implies

det (Bt Byt ) = det (AT A7) det (Byert” Bitert) > 1 /22175 |

by fact 4 from Section 2.1. Consequently, Fepq > 1 /20("35). Thus we obtain
log I;fi”dt =0 (n3S). Hence, the overall complexity of the Lovasz basis reduction
algorithm is O (Sn®logn).

Finally, we will prove that the bit-size of the entries of the reduced basis is
O (Sn®). Let us recall inequality (1):

H HbzendH < Qn(n[l) det (L) _ 2% ‘det (B;sltart)’ 7
i=1

and denote with a the least common multiple of all entries of B!t Note that
the bit-size of a is O (Sn?). Since b{"®’s are integer linear combinations of b5**""’s,
the vectors abf”d are integer. Therefore, we have

n
H HabfndH < 271(721*1)&“ |det (Bzmrt)} < 2%2&9“!25 _ 2O(Sn3)'
i=1

Thus, every entry of aBE"? is of bit-size O (S’n3) and so is every entry of BS™e.
In terms of the adopted denotations, we have proved the following lemma.

Lemma 1. The algebraic complexity of Lovdsz’ basis reduction algorithm is
O(Sn®logn), and the bit-size of the entries in the reduced basis is O(Sn?3).
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2.3 Kannan and Bachem’s Hermite Normal Form Algorithm

In our description we follow [2T]. The input for the algorithm is an mxn (m < n)
integer matrix A of full rank. The algorithm uses the matrix

M
A=Al - :
M

where M is the absolute value of some nonsingular m x m minor of A. A’ has
the same Hermite normal form as A. The algorithm consists of the following five
steps:

1. Cause all the entries of the matrix A to fall into the interval [0, M), by adding
to the first n columns of A’ proper integer multiples of the last n columns;

2. For k from 1 to m do 3-4;

3. If there are i # j, k <1i,j < n+ k, such that aj ; > a;c)j > 0, then subtract

from the ith column the jth one multiplied by {:,LJ Then reduce the ith
-
column modulo M. Go to 3; ’
4. Exchange the kth column and the only column with aj,; > 0;
5. For every i from 2 to n; for every j from 1 to i — 1, add an integer multiple

of the ith column to the jth one, to get a;; > a; ; > 0.

In order to show that the time complexity is polynomial in m,n and linear in S,
we need to analyze step 3. For this, we introduce the function

/ / / L /
F(ak7k7@k’k+17...ak’n+k) = H ak’i.
E<i<n+k
ay.; >0

After one iteration of step 3, we have

which implies both F% < % and F"T < Z’f’j. It is not hard to see that one
-

i

iteration of step 3 can be performed in O (m log Z%) =0 (m log FL) time.
k“] new

So, step 3 takes O (mlog };L“;‘) time. Since Fipqry < M™1 | F..q > 1, and

M =0 (mIQmS) by fact 3 of Section 2.1, the overall running time of step 3 is
O (nm (logm + 5)). Then the complexity of the Kannan-Bachem’s algorithm is
O (nm? (logm + S5)).

Since all the resulting integers are smaller than M, their bit-size is O (Smn).
Thus we have proved the following lemma.

Lemma 2. Let A be an m x n (m < n) integer matriz of full rank. Then the
algebraic complexity of the Kannan-Bachem’s algorithm that reduces A into its
Hermite normal form, is O(m?*n(logm + S)).
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3 Basic Results about ILPg

In this section we use the analysis of the algorithms from the previous section
to obtain the first two of the results announced in the Introduction.

To solve ILPR algorithmically within the BSS-model, we follow the idea of
our method developed in [4]. There its complexity was analyzed within a strengt-
hened version of the BSS-model, in which the floor operation |.]| is considered
as a basic one, executable at unit cost. Here we will apply and analyze it within
the standard BSS-model.

The algorithm employs in one of its stages the well-known algorithm for
finding a simultaneous Diophantine approximation to a given rational vector. In
particular, we will use the following lemma.

Lemma 3. (see, e.g., [Z1, Corollary 6.4c]) There exists a polynomial algorithm
which, given a vector a € Q" and a rational number €, 0 < ¢ < 1, finds an

integral vector p and an integer q such that ||a — (1/q)p|| < €/q, and 1 < q <
2n(n+1)/4€7n.

Now we pass to the description of our algorithm for ILPr. As mentioned
before, it consists of two main stages. In the first stage, the algorithm redu-
ces the constraints with real coefficients to constraints with integer coefficients
determining the same admissible set. The first step of this reduction is the sub-
stitution of a given real vector with an appropriate rational vector, justified by
the following lemmall.

Lemma 4. Given a vector a € R" with || <1,57=1,2,...,n, and D € Z,
there exists an O(n*logn(n + log D)) algorithm that finds p € Z™ and q € Z
such that |a; —pj/ql <1/(¢D), 5=1,2,...,n, and 1 < ¢ < [2n(n+5)/4 D],

Proof First we describe the algorithm finding p € Z™ and ¢ € Z with the
required properties. It consists of two basic steps.

1. For each aj, 1 < j < n, find the closest rational fraction a; with denominator
G = |‘2n(n+5)/4Dn+1‘|.

2. Apply the algorithm from Lemma ] with input a = (aq,...,a,) € Q™ and
e = 1/(2D). The output is a vector p € Z™ and an integer ¢ € Z, with
lla = (1/a)pll < 1/(2¢D) and 1 < g < [27*F)/4D™].

Clearly, |o; — a;| < 1/(2G). Then we have

_bi
q

S \aj—aj|+

S |ozj—aj\+

1 1
Q; aj—apj a—ap <

11 1 11
<3GV 2gD = 2.[220t9/AD" | D T 2qD © 4D’

i.e., the obtained vector p and integer ¢ are as desired.

! To reduce the given real constraints to an equivalent set of integer constraints, one
can also use the approach from [20].
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Now we evaluate the algorithm’s complexity. For a given real number «;, the
closest rational fraction with denominator G = [2"("+5)/4D"+1] can be found
in time O(log G) = O(n? + nlog D). Thus the overall time complexity of Step 1
is O(n® +n2log D)A

Step 2 involves the simultaneous Diophantine approximation algorithm ap-
plied to the particular class of inputs a € Q™, ¢ = 1/(2D) obtained in Step 1. As
a matter of fact, this algorithm is a specialization of the Lovasz basis reduction
algorithm, applied to a matrix of the form

1 aq
1 a9
1 a,
1/G
where a1, as, . .., a, are rational numbers, all of them with the same denominator

G = 20(n(n+log D)) The following bound on the number of iterations holds.

Lemma 5. (see [4, Lemma 4.4]) In Step 2 of the algorithm, O(log L;“:Z:zt) =
O(n® + n?log D) iterations are performed.

From (4) and Lemma [ we obtain that the time complexity of Step 2 is

FS ar
0 (n2 log n log Ftt) = O(n’logn(n® +n’log D)) =

end
= O(n*logn(n +log D)).
Thus the overall time complexity of the algorithm is O(n*logn(n +1log D)). O

The algorithm of Lemma M| can be used to substitute any real constraint
ax < b with an integer one, preserving the same admissible integer points x with
0 <z <d, d € R" More precisely, we have the following lemma.

Lemma 6. Let T = {zx € Z" : ax < b;0 < d}, wherea € R*", be R, d € Z'}.
Then there exists an algorithm which finds a vector r € Z™ and a number rq € Z
such that T = {x € Z" : rx < r9;0 < x < d}. The algorithm involves at most n
applications of the algorithm from Lemmal[g, with D = ||d||.

Proof of the above fact is available in [4] Lemma 5.1].

From Lemmas [4 and [fl we obtain that the overall time complexity of the
reduction stage is O(mn®logn(n + log||d||)). Furthermore, the bit-size of the
generated integers is O(n?(n + log||d||)). Therefore, the overall bit-size of the
reduced problem is O(mn3(n + log||d|])).

At this point, the second of the announced results follows immediately. First
we unfold the applications of the Lovasz basis reduction algorithm in an algebraic

2 Note that in the BSS-model extended with a unit cost floor operation (the case
handled in [4]) this requires O(n) operations.
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decision tree with depth O(mn®logn(n + log||d||)). After that, we branch on
every bit of the obtained integer data problem, which adds O(mn?(n+log||d||))
to the depth of the tree. Thus we obtain the following theorem.

Theorem 1. There is an O(mn®logn(n + log||d||)) algebraic decision tree for
ILPg.

To obtain the other result of ours, we continue with the second stage of
the algorithm. That stage is an application of the Lenstra’s algorithm to the
integer data problem obtained as output of the first stage. A recursive step of
this algorithm reduces an n-dimensional problem to a set of subproblems of
dimension n — 1, whose number is exponential but depending only on n. The
basic algorithms used in this reduction are the Lovéasz basis reduction algorithm
and the Kannan-Bachem’s Hermite normal form algorithm. In addition, a linear
programming problem of dimension (m + 2n) x n is to be solved.

The two algorithms are applied to matrices of dimension depending only on n
and with entries of bit-size O(log||d||), as the value of n is fixed. Then, by Lem-
mas [[land 2] their complexity as well as the bit-size of the integers they generate,
are bounded by O(log||d||). The linear programming problem can be solved in
time O(m+n) (i.e., linear in m) using the well-known Megiddo’s algorithm [16].
Hence, if n is fixed, the overall complexity of this stage is O(mlog||d||). Thus
we have obtained the following theorem.

Theorem 2. There is an O(mlog||d||) algorithm for ILPr of fized dimension
n.

Theorem [2limplies a tight bound for the algebraic complexity of the knapsack
problem.

Corollary 1. The algebraic complexity of the knapsack problem KPgr of fixed
dimension n is O(log ——).

Qmin

Proof An upper bound O(log ﬁ) follows from Theorem 2] A lower bound

2(log ﬁ) follows from [5], where a tight bound ©(log &) is proved for the
algebraic complexity of the two-dimensional knapsack problem with real coeffi-
cients. 0

Regarding possible practical applications, one can expect that the proposed
algorithm for ILPr may be useful for problems with a small number of variables
and a large number of constraints.

4 Lower Bound for the Knapsack Problem
In this section we study the complexity of the Boolean knapsack problem
(0/1 —KPgr) Given a € R%, decide if there is z € {0,1}" such that a”z = 1.

In the classical setting, the knapsack problem has been studied intensively (see
[15] and the bibliography therein). In particular, the problem is NP-complete
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[8]. Regarding “real” knapsacks, a number of results have been proved. Notable
among them are the lower bounds £2(n?log ) and £2(n?) for KPg’s and 0/1-
KPgr’s complexity, respectively (see [1]). In [Z;]mthe topological complexity of the
latter problem is found. [17] provides a parallel time lower bound. Some other
results are presented in [7J4[5]. For a related discussion the reader is also referred
to [2].

In this section, we take one more step towards determining the algebraic
complexity of the knapsack problem. We obtain a result which complements the
above mentioned Ben-Or’s lower bounds. More precisely, we have the following
theorem.

Theorem 3. No algorithm solving 0/1—-KPgr can achieve a time complexity
o(nlogn) - f(ay,...,a,), where f is an arbitrary continuous function of n va-
riables.

Remark 1. The requirement for f to be a continuous function is essential, as
follows from [6]. More precisely, it has been shown that there is an O(nﬁ)

algorithm for 0/1—KPgr, where 6(a) = min{|a”z|: aT2 # 0,2 € {-1,0,1}"}.

Proof Assume the opposite, i.e., that there is an algorithm A that solves 0/1-
KPg in o(nlogn)- f(a1,...,a,) time, for a continuous function f. We consider
a subclass C' of inputs of 0/1-KPgr determined by the constraints

1< <2 for1<i<
- <a; < - forl1<i<n.
3 3

Let us denote

C={ali<a<3 1<i<n},
Cyes = {ala€C, Jxe{0,1}" : a’z =1},
CVLO:C\Cyes-

For any problem input from the considered subclass the value f(ai,...,ay)
is bounded by a constant, and thus the time complexity of the algorithm A
reduces to o(nlogn).

On the other hand, according to the Ben-Or’s theorem [I], in the considered
computational model a lower bound {2(log #c.c. (C),,)) holds for the complexity
of any algorithm solving 0/1-KPg for inputs from Cy.s, where #c.c.(Cp,) is the
number of connected components of C,,,. We will show that #c.c. (Cpo) = nl,
i.e., log #c.c. (Cpo) = logn! = O(nlogn). This will contradict the o(nlogn) time
complexity of the algorithm A on inputs from C'. Thus, to complete the proof it
suffices to prove the following lemma.

Lemma 7. The set Cy,, has ezxactly n! connected components.

Proof First of all, let us observe that a € Cye, if and only if 3,5 ¢ # j such
that a; + a; = 1. For every a € C),, we denote

Sa = {{ai,a;} | i # 4, ai +a; <1}.
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As a first step of the proof we will show that C),, has as many connected com-
ponents as the number of all distinct sets S,, a € Ci,.

First we show that if for some a’,a” € C,, the condition S,, = S,~ holds,
then a’ and a” belong to the same connected component of C,,,. Clearly, C,,, =
{alaeC, Vae{0,1}" : a’x # 1}. Since Sy = Syv, for every i,j i # j both
a; +aj — 1 and a] +a} — 1 have the same sign, either positive or negative but
not zero. The same is the sign of a; + a; — 1, where a = (a1,...,a,) is any
affine combination of @’ and a”. Thus a € C,,,, so that the whole segment with
endpoints @’ and a” lies in C,,,. This implies that these two points belong to the
same connected component.

Now we prove that if a’, a” € C,,, are in the same connected component, then
Sqr = S,r. Assume the opposite, i.e., that there are a’,a” € C,,, belonging to the
same connected component D, while S,; # Sg». Then there are 4,5 i # j such
that a; +a} < 1 and @ + a7 > 1. Let £ be a continuous curve with end-points
a’ and a”, which is contained in D. We define a function h(x) = x; + z;, where
x;, x; are, respectively, the 7th and jth component of z € R". Let us consider
the restriction of h(z) on the curve £. We have h(a') = a; +a} <1 < a} +a} =
h(a"). Since h is continuous, there must be a point a on the curve £ for which
h(a) =a;+a; =1. But a € L C D C C,, and therefore a; + a; < 1, which is a
contradiction.

Thus it only remains to count all distinct sets S,, a € C,,. We will use
induction on the dimension n. As the basis of the induction, for n = 2 we have
two such distinct sets, namely () and {{a1, az}}. Suppose that the thesis is true
for dimension n — 1, and take an arbitrary set S,, where a = (ay,...,a,_1) is
an (n — 1)-dimensional vector. Without loss of generality we assume that the
coordinates of a are all distinct, and consider them in an increasing order:

1 2

g <ay <ap, <...<a,, < §
To pass to dimension n, we need to add one more coordinate a,, to the vector a.
One can choose a,, in n different ways:

1-— a;, < ap < %,

l—aj; <ap,<l—a;_  for2<j<n-1,
1 : :
3 <ap, <1 — 5, -

Thus we get n distinct sets “generated” by Si:
SeU{{ai,,an} |1 <k<j}, for0<j<n-—1

Note also that two sets generated by sets S, # S, are distinct because their
maximum subsets of (unordered) pairs not containing a, are (i.e., the sets Sy
and Sg, themselves).

Thus we have proved that the number of connected components of C,,, in-
creases by a factor of n when passing from dimension n — 1 to dimension n.
Hence, this number is exactly n!, as claimed. a
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Remark 2. The Ben-Or’s theorem states a lower bound £2(log #c.c.(Cp,)) on the
complexity of any algorithm solving 0/1-KPgr. Note that, in the general case,
when no restrictions on the coefficients a1, as,...,a, are imposed, the number
of connected components of C, is 22("*). Hence, the lower bound 2(n?) holds.
This larger number 29 (n*) (compared to the number n! of connected components
of the class C) is due to the inputs in which the a;’s are “close to 0 or 1.” These
inputs are excluded from C. Therefore, the Ben-Or’s bound 2(n?) does not
imply directly ours, although we have used his theorem, together with Lemma
[7l to obtain ours.

Remark 3. To obtain the complexity result of Theorem Bl we have used the
class of instances C' = {a | % <a; < %, 1< < n} It is easy to see that an
O(nlogn) algorithm exists for this particular class. To show this, first we sort
in O(nlogn) time the coefficients of a’x = 1. After an appropriate substitution
and enumeration of the variables we obtain an equation with coefficients a; <
as < ... < a,. As already observed, a solution to a”x = 1 exists if and only if
3i,j i # j such that a; +a; = 1. In order to check whether this condition is met,
we search the sorted array of coefficients in linear time, as follows. Set i = 1,
j=n.lfa;+a; <1, thenseti:=i+1;If a; +a; > 1, thenset j:=j—1.1If
a; +a; =1 or i = j, then stop. In the former case the equation has a solution
(namely, z; = 1, ; = 1, zp = 0 for k # 4,7). In the latter case a solution
does not exist. The complexity of this procedure is O(n), and thus the overall
complexity of the algorithm is O(nlogn). The proof of Theorem [A demonstrates
that for the class C' this algorithm is, in fact, optimal.

Clearly, an analogous result holds for the complexity of the classical Boolean
knapsack problem (0/1-KP) aTx = b with integer coefficients. This problem is
equivalent to the equation @’z = 1 with @ = %a, to which Theorem [3] applies.
Thus, we have lower time complexity bounds, both for the Boolean knapsack
problem with real coefficients and the classical formulation, and these bounds
are independent of the known lower bound £2(n?).

One can show that the result of Theorem [l is still valid for the integer
knapsack problem KPgr. Unlike the Boolean case, here an input a belongs to
Cyes not only if a; + a; = 1 for some indices i, j, but also if ar = % for some
index k. Accordingly, the set S, is modified as

Se = {{ai,a;} | a;+a; <1}.

Note in the definition above that we allow ¢ = j. This adds to the set S, every
singleton {ax} such that ar, = 1/2. One can show that C,,, has at least as many
connected components as the number of the distinct sets S,, a € Cy,,. Then by
induction on n one obtains that the set C),, has at least n! connected components,
from where the result follows. The proof is a straightforward modification of the
one of Theorem [3 and therefore is omitted.

As a last comment of this section we mention that the Ben-Or’s lower bound,
as well as the negative complexity result of Theorem [3, suggest seeking certain
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approximation solutions to the knapsack problem. For instance, one can look
for a Boolean vector that is “enough close” to the hyperplane determined by
a’r =1 (e.g., minimizing |a”x — 1| within a given tolerance ¢ > 0). We notice
that the best of the existing algorithms (see, e.g., [L1]) for this approximation
problem are indeed linear with respect to the dimension n.

5 Concluding Remarks

We have presented an O(mlog||d||) algorithm for integer linear programming
with real coefficients and fixed number of variables, within the Blum-Shub-Smale
computational model. A further task would be to show that this complexity
bound is tight.

We have also obtained a lower bound for the complexity of the real knapsack
problem. In view of this result, it would be interesting to know if there is an
algorithm for 0/1-KPg with time complexity O(n?~% f(a)), § > 0.

Some of the obtained results (e.g., Corollary 1) show that the integer pro-
gramming problems are, in general, intractable in the framework of the com-
plexity theory over the reals, since their complexity cannot be bounded by any
polynomial in the input size, the latter being a polynomial only in m and n. Some
further refinements of the theory suggest, however, that these problems can be
considered as efficiently solvable. Following Smale [23], a numerical algorithm
can be considered as efficient only if its complexity is bounded by a polynomial
in the problem dimensions and the logarithm of its weight. The weight function
is defined in accordance with the problem specificity and used to measure the
difficulty of a problem instance. Under such a convention, let us define the weight
of ILPgr as a number ||d|| which bounds the norms of the admissible solutions.
Then the results of Section 3 imply that ILPgr and KPg are efficiently solvable
in the above sense.
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