
An Interpretation of Typed Concurrent

Objects in the Blue Calculus

Silvano Dal Zilio

Microsoft Research, Cambridge, England

Abstract. We propose an interpretation of a typed concurrent calculus

of objects based on the imperative object calculus of Abadi and Cardelli.

The target of our interpretation is a version of the blue calculus, a variant

of the π-calculus that directly contains functions, with record and �rst-

order types. We show that reductions and type judgments are derivable in

a rather simple and natural way, and that our encoding can be extended

to recursive and self-types, as well as to synchronization primitives. We

also use our encoding to prove some equational laws on objects.

1 Introduction

In the recent past, there has been a growing interest in the theoretical foun-
dations of object-oriented and concurrent programming languages. One of the
means used to explain object-oriented concepts, such as object types or self-
referencing for example, has been to look for an interpretation of these concepts
in simpler formalisms, such as typed λ-calculi. However, these interpretations
are di�cult, and very technical, due to the di�culties raised by the typing, and
subtyping, of objects. To circumvent these problems, Abadi and Cardelli have
de�ned a canonical object-oriented calculus, the ς-calculus [1], in which the no-
tion of object is primitive, and they have developed and studied type systems
for this calculus.

In this paper, we give a model of concurrent object computation based on a
modeling of objects as processes.We introduce some derived notations for objects
and we give their translation in a version of the blue calculus, π? [5], extended
with records. We type Blue calculus processes using an implicit, �rst-order type
system based on the simply typed λ-calculus.

Using these derived constructs, we give an interpretation of a concurrent
and imperative version of ς de�ned by Gordon and Hankin, concς [13]. We
prove that this interpretation preserves reduction, typing and subtyping judg-
ments. Therefore, our encoding gives an interpretation of complex notions, such
as method update or object types, in terms of more basic notions such as records,
�eld selection and functional types. Consequently, we obtain a type-safe way to
implement higher-order concurrent objects in the Blue calculus, and therefore in
the π-calculus (π). Moreover, we can validate possible extensions of concς and,
what is more original, we can use the embedding of concς in the Blue calculus
to do equational reasoning on the source calculus. As an example, we sketch the
proof of an equational law between objects at the end of this paper.

J. van Leeuwen et al. (Eds.): IFIP TCS 2000, LNCS 1872, pp. 409−424, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000

We organize the rest of the paper as follows. The next section introduces the
Blue calculus using very simple intuitions taken from the λ-calculus execution
model. This is an occasion to give an informal and intuitive presentation of the
Blue calculus to the reader. Section 3 brie�y introduces Gordon and Hankin's
calculus of objects and gives its interpretation in π?. We prove that concς is
embedded in π? and that objects can be viewed as a particular kind of (linearly
managed) resource. Section 4 is dedicated to the typing of processes and objects.
It introduces a new type operator that is very well suited for typed continuation
passing style transformations. Before concluding, we look at possible applications
of our interpretation. Complete de�nition of the calculi and omitted proofs may
be found in a long version of the paper [8].

2 The Blue Calculus

In the functional programming world, a program is ideally represented by a
λ-calculus term, that is a term generated by the following grammar:

M,N ::= x λx .M (MN)

We enrich this calculus with a set of constants: a1, a2, . . . , called names, that
can be interpreted as resource locations. We describe a very simple execution
model for programs written in this syntax based on the notion of abstract ma-
chine (AM), and we enrich it until we obtain a model that exhibits concurrent
behaviors similar to those expressible in the π-calculus. This abstract machine
sets up the foundation of the Blue calculus that can therefore be viewed, at the
same time, as a concurrent λ-calculus and as an applicative π-calculus.

An abstract machine is de�ned by a set of con�gurations, denoted K, and a
set of transition rules, K → K′, which de�ne elementary computing steps. In our
setting, a machine con�guration is a triple {E ;M ;S} where E is a memory, or
store, that is an association between names and programs; M is a program, that
is a λ-term; S is a stack containing the arguments of functional calls. Initially
an AM has an empty memory, denoted by the symbol ε, which can be extended
with new declarations as in (E | 〈an = N〉). The stack has a similar structure
and we use (aj ,S) to denote the operation of adding the name aj to the stack.

An execution of the functional AM starts in the initial con�guration K0, with

an empty stack and memory (K0
M

= {ε;M ; ε}). The transition rules are de�ned as
follows, where M{x←aj} denotes the outcome of renaming all free occurrences
of x in M to the name aj.

{E ; aj;S} → {E;Nj;S} (E = · · · | 〈aj ⇐ Nj〉 | · · ·)
{E ;λx .M ; (aj,S)} → {E ;M{x←aj};S}
{E ; (MN);S} → {(E | 〈an = N〉);M ; (an,S)} (an fresh name)

For example, to evaluate a function application we memorize the argument
in a fresh memory location, and we add the name of this location to the stack.

410 S. Dal Zilio

At each computation step, the machine is in a con�guration of the kind:

Kn = {(〈a1 = N1〉 | · · · | 〈an = Nn〉);M ; (ai1 , . . . , aik)}

Where the indices ij ∈ 1..n for each j ∈ 1..k. Each con�guration corresponds
to a λ-term and, for example, Kn corresponds to (Mai1 . . . aik){a1←N1} . . .
{an←Nn}. Therefore, to each extension of the functional AM corresponds a
generalization of the λ-calculus. In this section, we improve the functional AM
until we obtain an execution model that compares to that of π. The calculus
de�ned by the extended AM is the Blue calculus.

We start with simple syntactical modi�cations. We modify our notations to
use a sequence of applications instead of a stack, recasting the standard con-
�guration Kn into: 〈a1 = N1〉 | · · · | 〈an = Nn〉 | (Mai1 . . . aik). With these
modi�cations, we can reformulate the transition rules in the following way, with
the side condition that the name a is fresh in rule (χ):

〈a = N〉 | · · · | (aa1 . . . an) → 〈a = N〉 | · · · | (Na1 . . . an) (ρ)
(λx .M)a1 . . . an → (M{x←a1})a2 . . . an (β)
(MN)a1 . . . an → 〈a = N〉 | Maa1 . . . an (χ)

K → K′ ⇒ (〈a = N〉 | K)→ (〈a = N〉 | K′) ($)

In this new presentation, rule (β) corresponds to a simpli�ed form of beta-
reduction, where we substitute a name, and not a term, for a variable, whereas
rule (ρ) can be interpreted as a form of communication. Nonetheless, whereas the
classical π-calculus communication model is based on message synchronization,
we use instead a particular kind of resource fetching.

A �rst improvement to the AM is to consider | as an associative composition
operator, and to allow multiple con�gurations in parallel. We do not choose a
commutative operator. The idea is to separate in each con�guration, the store
from the active part, that is, to separate the memory from the evaluated term.
We allow some commutations though, with the restriction that the evaluated
term is always at the right of the topmost parallel composition. More formally,
we consider the following structural rules for parallel composition, where P ←→ Q
means that both P → Q and Q→ P holds.

(M1 | M2) | M3
←→M1 | (M2 | M3) (M1 | M2) | M3

←→ (M2 | M1) | M3

As a result, we obtain an asymmetric parallel composition operator, like the
one de�ned in concς , or the formal description of CML [10]. Another conse-
quence is that we can replace rule (ρ) by the simpler rule:

〈a = N〉 | (aa1 . . . an) → 〈a = N〉 | (Na1 . . . an) (2.1)

Roughly speaking, we have transformed our functional AM to a Chemical AM
(CHAM) in the style of [4]. The most notable improvement is the possibility to

411An Interpretation of Typed Concurrent Objects in the Blue Calculus

compose multiple con�gurations and, for example, to de�ne con�gurations with
multiple declarations for the same name. Indeed this introduces the possibility
of non-deterministic transitions, such as:

(〈a = N1〉 | 〈a = N2〉 | a)→ (〈a = N1〉 | 〈a = N2〉 | N1)
(〈a = N1〉 | 〈a = N2〉 | a)→ (〈a = N1〉 | 〈a = N2〉 | N2)

Another improvement to our concurrent AM is the addition of a new kind of
declaration, that is discarded after a communication. We denote 〈a ⇐ P 〉 this
declaration, and we add the following communication rule.

〈a ⇐ N〉 | (aa1 . . . an)→ (Na1 . . . an) (2.2)

Intuitively, the declaration 〈a ⇐ N〉 allows us to control explicitly the num-
ber of accesses to the resource named a, like the input operator a(x).P in π, and
thus it allows us to capture the evaluation blocking phenomena that are peculiar
to concurrent executions. In the encoding of concurrent objects in π?, we will
see that objects also appear as a particular kind of declarations.

Finally, we add the possibility to dynamically create fresh names. This mech-
anism is a distinctive feature of the π-calculus, and it is very easily implemented
in our CHAM by adding the restriction operator, (νa)K, together with new
reduction rules. Using the restriction operator we can, for example, de�ne the
internal choice operator (M⊕N) to be the term (νa)(〈a ⇐ M〉 | 〈a ⇐ N〉 | a).

2.1 The Calculus

The Blue calculus can be viewed as the calculus obtained from the concurrent
AM, in the same way that the join-calculus is derived from the re�exive CHAM
de�ned in [12]. The following table gives the syntax of processes, P . The syntax
depends on a set of atomic names, N , ranged over by a, b, . . . and partitioned in
three kinds: variables x, y, . . . , bound by abstractions, (λx)P ; references u, v, . . . ,
bound by restrictions, (νu)P ; labels k, l, . . . , used to name record �elds.

Processes

P,Q ::= process
a name
(λx)P small λ-abstraction
(Pa) application
(P | Q) parallel composition
(νu)P name restriction
〈u ⇐ P 〉 linear declaration
〈u = P 〉 replicated declaration
[] empty record
[P , l = Q] record extension
(P ·l) selection

412 S. Dal Zilio

Our syntax enforces a restricted usage of names with respect to their kinds:
we only allow declaration on references and abstraction on variables. This rule
out terms such as (λx)〈x ⇐ P 〉 for example.

The formal operational semantics of π? is given in a chemical style and
de�ned using two relations. First, the structural congruence relation ≡, which is
equivalent to the relation←→ used previously, and that is used to rearrange terms.
Second, the reduction relation,→, which represents real computation steps, and
that corresponds to (2.1), (2.2) and (β).

Structural congruence

P ≡ P (Struct Re�)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)
P ≡ Q ⇒ (λx)P ≡ (λx)Q (Struct Lam)
P ≡ Q ⇒ (Pa) ≡ (Qa) (Struct Appl)
P ≡ Q ⇒ (P ·l) ≡ (Q ·l) (Struct Sel)
P ≡ Q ⇒ (P | R) ≡ (Q | R) (Struct Par)
P ≡ Q ⇒ (νu)P ≡ (νu)Q (Struct Res)
P ≡ Q ⇒ 〈u ⇐ P 〉 ≡ 〈u ⇐ Q〉 (Struct Decl)
P ≡ Q ⇒ 〈u = P 〉 ≡ 〈u = Q〉 (Struct Mdecl)
P ≡ Q,R ≡ S ⇒ [P , l = R] ≡ [Q , l = S] (Struct Over)
((P | Q) | R) ≡ (P | (Q | R)) (Struct Par Assoc)
((P | Q) | R) ≡ ((Q | P) | R) (Struct Par Comm)
u 6∈ fn(Q) ⇒ (νu)P | Q ≡ (νu)(P | Q) (Struct Res Par)
u 6∈ fn(Q) ⇒ Q | (νu)P ≡ (νu)(Q | P) (Struct Par Res)
(νu)(νv)P ≡ (νv)(νu)P (Struct Res Res)
(P | Q)a ≡ P | (Qa) (Struct Par Appl)
(P | Q) ·l ≡ P | (Q ·l) (Struct Par Sel)
a 6= u ⇒ ((νu)P)a ≡ (νu)(Pa) (Struct Res Appl)
((νu)P) ·l ≡ (νu)(P ·l) (Struct Res Sel)

Reduction

P → P ′ ⇒ (Pa)→ (P ′a) (Red Appl)
P → P ′ ⇒ (P ·l)→ (P ′ ·l) (Red Sel)
P → P ′ ⇒ (P | Q)→ (P ′ | Q) (Red Par 1)
Q→ Q′ ⇒ (P | Q)→ (P | Q′) (Red Par 2)
P → P ′ ⇒ (νu)P → (νu)P ′ (Red Res)
P → P ′, P ≡ Q ⇒ Q→ P ′ (Red ≡)
((λu)P)v → P{u←v} (Red Beta)
〈u ⇐ P 〉 | (ua1 . . . an)→ (Pa1 . . . an) (Red Decl)
〈u = P 〉 | (ua1 . . . an)→ 〈u = P 〉 | (Pa1 . . . an) (Red Mdecl)
[P , l = Q] ·l → Q (Red Sel)
k 6= l ⇒ [P , l = Q] ·k → P ·k (Red Over)

413An Interpretation of Typed Concurrent Objects in the Blue Calculus

Notations. We use ã to denote the sequence a1, . . . , an and fn(P) to denote the

set of free names in P . We abbreviate a sequence of abstractions, (λx1). . . (λxn)P ,

into (λx̃)P . The same convention applies for (νũ)P . We also abbreviate a se-

quence of extensions, [[[] , l1 = P1] , . . . , ln = Pn], where l1, . . . , ln are pairwise

distinct labels, into [li = Pi
i∈1..n], and a sequence of applications, Pa1 . . . an,

into P ã.

2.2 Derived Operators

To simplify the presentation of our encoding and of the type system, we introduce

three derived operators.

def u = P inQ
M

= (νu)(〈u = P 〉 | Q) de�nition

setx = P inQ
M

= (νu)(〈u ⇐ (λx)Q〉 | (Pu)) linear application

reply(a)
M

= (λr)(r a) synchronous message

We may interpret the �rst operator, subsequently called a de�nition, as an

explicit substitution of P for the name u in Q, and we can de�ne higher-order ap-

plication, (PQ), as a shorthand for def u = Q in (Pu), where u 6∈ fn(P)∪ fn(Q).
Note that the name u is recursively bound in def u = P inQ, and that it is pos-

sible to de�ne recursion, rec u.P , by (def u = P inu). Using linear application,

it is possible to de�ne sequential composition, P ; Q, as (setu = P inQ), for
some u not free in Q. The reply operator is used in continuation passing style

encoding and, for example, to return a value in a linear application.

setx = reply(a) inQ → (νu)(〈u ⇐ (λx)Q〉 | (ua)) ∗→ Q{x←a}

We can compare reply(a) with the synchronous names of the join-calculus,

with the di�erence that, using our notation for higher-order application, it

is possible to �reply� a general term, with reply(P) standing for the term

def u = P in (λr)(ru).

3 Interpretation of the Concurrent Object Calculus

The calculus concς is a calculus based on the notion of naming, obtained by

extending the imperative ς-calculus with π-calculus primitives, such as parallel

composition and restriction. As the imperative ς-calculus, it also provides an

operator to clone an object, and a call-by-value de�nition operator: letx = a in b.

Expressions and results

u, v ::= result

x variable

p name

d ::= denotation

{li = ς(xi)bj
i∈1..n}

414 S. Dal Zilio

a, b, c ::= term
u result
(p 7→ d) denomination
u·l method invocation
u·l ↼↽ ς(x)b method update
clone(u) cloning
letx = a in b sequencing
(a � b) parallel composition
(νp)a name restriction

The basic constructor of concς is the denomination, (p 7→ d), that, infor-
mally, adds a name to an object of ς and acts like a special kind of declaration. It
represents the store of an object-oriented program, like the declaration 〈a = M〉
represents the store of a con�guration in the functional AM. We omit the formal
de�nition of concς in this paper, but we hope that the reader unfamiliar with
this calculus can grasp some idea of it from our interpretation. Its operational
semantics is de�ned in a chemical style, with a structural equivalence, ≡, anal-
ogous to the homonymous relation in π?, and a reduction relation, →. Some
reductions of concς come from the let constructor, where values are names.
For example, (letx = p in b)→ b{x←p}. However, the basic interactions are be-
tween a denomination, and a method invocation, a method update or a cloning
on its name. Assume d is the denotation {li = ς(xi)bi

i∈1..n}, we get that:

j ∈ 1..n

(p 7→ d) � p·lj → (p 7→ d) � bj{xj←p}

d′ M= {li = ς(xi)bi
i∈1..n,i 6=j

, lj = ς(x)b} j ∈ 1..n

(p 7→ d) � (p·lj ↼↽ ς(x)b)→ (p 7→ d′) � p

q 6∈ fn(d)

(p 7→ d) � clone(p)→ (p 7→ d) � (νq)((q 7→ d) � q)

We interpret concς in the Blue calculus and we prove an operational corre-
spondence result. In the process of de�ning the encoding of concς , denoted [[.]]
hereafter, we will naturally introduce some derived operators for the object no-
tations. We see that it allows regarding concς as embedded in the Blue calculus,
and therefore π? as an object calculus.

We suppose that the concς names are included in π?. Informally, the inter-

pretation of a denomination (p 7→ d), where d
M

= {li = ς(xi)bi
i∈1..n}, is a process

modeling a �reference cell� that memorizes n values, (λx1)[[b1]], . . . , (λxn)[[bn]].
That is a recursively de�ned declaration of the name p, which encapsulates a
record with 2n �elds: the access �eld get li , used to invoke method li; the �eld
put li , used to modify this method. We also add a �eld named clone that, when
selected, creates a fresh cell with a copy of the current state. Schematically, we
use the split-method technique of [2].

415An Interpretation of Typed Concurrent Objects in the Blue Calculus

Let R(p, s, x̃, c) be the following record (of π?):

R(p, s, x̃, c)
M

=




. . . i∈1..n

get li = (sx̃ | xip),
put li = (λy)(sx1 . . . xi−1 y xi+1 . . . xn | reply(p)),
. . .
clone = (sx̃ | cx̃)




In our intuition, the identity of an object is a reference at which the object
state can be fetched (the name p), its state is a record of methods as in the clas-
sical recursive records semantics [6] and encapsulation is naturally implemented
using the def operator. In particular, the variable xi is used to record the value
of the method li, the name s is a pointer to a function that (given the xi's)
creates the object each time it is accessed, and the name c is a pointer to a
function that creates a fresh copy of the object when it is cloned.

To encode a denomination, we encapsulate the record R(p, s, x̃, c) in a recur-
sive de�nition that linearly manages a declaration of the name p. We de�ne a
notation for this de�nition.

Fobj(p, x̃, c)
M

= def s = (λỹ)〈p ⇐ R(p, s, ỹ, c)〉 in 〈p ⇐ R(p, s, x̃, c)〉

We denote 〈p ←[{ li = (λxi)Pi
i∈1..n }〉 the process that we obtain by binding

the name c to the function that clones the object, and the names in x̃ to the
functions (λx1)P1, . . . , (λxn)Pn.

〈p ←[{li = (λxi)Pi
i∈1..n}〉 M

=


def c = (λx̃)(νq)(Fobj(q, x̃, c) | reply(q))

in def u1 = (λx1)P1, . . . , un = (λxn)Pn

inFobj(p, ũ, c)




Intuitively, the process 〈p ←[D〉, where D
M

= {li = (λxi)Pi
i∈1..n}, can be

divided into two components. An active part, the declaration 〈p ⇐ R(p, s, x̃, c)〉,
which can interact with other processes in parallel. A passive part, the recursive
de�nitions on the names s, x̃ and c, which are used to memorize the internal
state of the cell and to (linearly) recreate its active part each time the name
p is invoked. Indeed, when 〈p ←[D〉 interacts with the name p, the unique
declaration on p is consumed and a unique output on the restricted name s,
acting like a lock, is freed, which, in turn, frees a single declaration on p. Using
the derived operator 〈p ←[D〉, we give a very simple and direct interpretation
of concς .

Translation rules

[[(p 7→ {li = ς(xi)bi
i∈1..n})]] M= 〈p ←[{ li = (λxi)[[bi]]

i∈1..n }〉
[[u]]

M

= reply(u)

[[u·l]] M= (u ·get l)
[[u·l ↼↽ ς(x)b]]

M

= (u ·put l (λx)[[b]])

416 S. Dal Zilio

[[clone(u)]]
M

= (u ·clone)

[[letx = a in b]]
M

= (setx = [[a]] in [[b]])

[[a � b]]
M

= ([[a]] | [[b]])

[[(νp)a]]
M

= (νp)[[a]]

We can simplify this interpretation a step further by de�ning three shorthand
for method select, method update and for cloning.

(P ⇐ l)
M

= (P ·getl) (P ·l ↼↽ (λx)Q)
M

= (P ·putl (λx)Q) clone(P)
M

= (P ·clone)

With these notations we can consider that concς is directly embedded in
the Blue calculus. More interestingly, we embed a higher-order version of the
object calculus, and it is possible to de�ne terms that are not in concς , like
clone(P | Q) for example, or the selector function (λx)(x⇐ l). We can also
derive a set of reduction sequences that simulate reduction in concς . Assume D
is the association { li = (λxi)Pi

i∈1..n } and j ∈ 1..n then:

〈p ←[D〉 | p⇐ lj
∗→ 〈p ←[D〉 | Pj{xj←p}

More formally, we prove that there is an operational correspondence between
concς and the Blue calculus. To state this result, we use an observational equiv-
alence between π?-terms de�ned in [7], denoted ≈, that is a variant of weak
barbed congruence [20]. Informally, this relation is the largest bisimulation that
preserves simple observations called barbs and that is a congruence.

Theorem 3.1. If a ≡ b, then [[a]] ≡ [[b]]. If a → a′, then [[a]]
∗→≈b [[a′]]. If

[[a]]→ P , then there exists a concς-term, a′, such that a→ a′ and P
∗→≈b [[a′]].

4 Type System

We de�ne a �rst-order type system for π?, inspired by the (Curry-style) simply
typed λ-calculus. It is essentially the type system given in [5], extended with
subtyping, record types, recursion and a special type constructor for continua-
tions, Reply(.). Then, we establish a set of derived typing rules for the object
notations introduced in the previous section, that simulate the typing rules of
concς .

We assume the existence of a denumerable set of type variables ranged over
by α, β, . . . The syntax of type expressions is given by the following grammar.

τ, ϑ, % ::= α (τ → ϑ) (µα.τ) Top simple types
[] [% , l : τ] Reply(τ) rows & continuation type

We consider that types are well formed with respect to a simple kinding
system, described in the extended version of this paper [8]. Informally, the kind
system is used to constrain the type % in the row [% , l : τ] and, for example, to
rule out types such as [(ϑ → %) , l : τ].

417An Interpretation of Typed Concurrent Objects in the Blue Calculus

In our system, a type environment is an association between names and types,
and also between type variables and kinds: Γ ::= ∅ Γ, a : τ Γ, α :: κ. The
type system is based on four judgments: (1) Γ ` �, and (2) Γ ` τ :: κ, for well
formed environment and types; (3) Γ ` τ <: ϑ, and (4) Γ ` P : τ , given Γ , type
τ is a subtype of ϑ and term P has type τ .

The type constructors are all borrowed from type systems for functional
languages, apart from Reply(.) that is used to type the continuation operator
reply(P) (and linear application) and that is described later. The type Top
is the maximal type with respect to the subtyping relation. We make a non-
standard use of this type constant: Top is used to type terms that may not be
expected to return results, for example resources.

Γ ` P : τ (u : τ) ∈ Γ

Γ ` 〈u ⇐ P 〉 : Top
(Proc Decl)

Γ ` P : Top Γ ` Q : τ

Γ ` (P | Q) : τ
(Proc Par)

Subtyping. We do not give the details of the subtyping rules here. The rules for
the functional part of the system are standard. For example arrow types (τ →ϑ)
are contravariant in the �rst parameter and covariant in the second. The sub-
typing rules for rows are less classical, and re�ect the incremental construction
of records. Provided the rows are well formed, we have the following subtyping
rules, together with rules that allow identifying rows up-to reordering of their
components.

Γ ` [% , l : τ] <: []

Γ ` % <: %′ Γ ` τ <: τ ′

Γ ` [% , l : τ] <: [%′ , l : τ ′]

Typing rules. The typing rules for the functional part of the calculus are those
of the simply typed λ-calculus extended with records and subtyping. The typing
rules for the π-calculus operators are the rules (Proc Par) and (Proc Decl) de�ned
previously. In particular, the type of a parallel composition, P | Q, is the type
of the main thread of computation, which is Q. The typing rule for declarations,
(Proc Decl), deserves more comment. Suppose that Γ ` P : ϑ, with (u : τ) ∈ Γ ,
and that u appears in subject position of a declaration 〈u ⇐ Q〉, for example

P
M

= (〈u ⇐ Q〉 | R). Since we may substitute Q for an occurrence of u in
R, see (2.2), the term Q must have the type τ . Using rule (Proc Decl), it is
easy to derive typing rules for de�nitions and higher-order application, that are
equivalent to those found in the ML type system.

Γ, u : τ ` P : τ Γ, u : τ ` Q : σ

Γ ` def u = P inQ : σ

Γ ` P : τ → ϑ Γ ` Q : τ

Γ ` (P Q) : ϑ

Typing continuations. We explain the typing and subtyping rules for the
operator Reply(.). Recall that reply(a) stands for (λr)(ra). Let α be a fresh type
variable. It can be proved that if P has type τ , then (λr)(r P) has type (τ→α)→α.
In (τ →α)→α, the variable α is implicitly quanti�ed, in the sense that reply(P)
can be given the type ∀α.((τ → α) → α) in the ML type system. The type (τ →
α)→α is often found in typed continuation passing style transformations, and in

418 S. Dal Zilio

λ-calculi with exceptions, where it is sometimes denoted ¬α¬ατ [15]. To avoid
the introduction of quanti�ed types, we use a new operator to type the term
reply(P), together with the introduction rule:

Γ ` P : τ

Γ ` reply(P) : Reply(τ)

We can compare our usage of reply(.) with the usage of the operator let in
ML, that can be de�ned as syntactic sugar for the term (λx .M)N , but that is
used in the type system to introduce parametric polymorphism.

It is possible to validate the two following rules using the interpretation of
Reply(τ) as the type (τ → α) → α (for some fresh type variable α).

Γ ` P : Reply(τ) Γ, x : τ ` Q : ϑ

Γ ` setx = P inQ : ϑ

Γ ` τ <: ϑ

Γ ` Reply(τ) <: Reply(ϑ)

The presence of Reply(.) is only a minor extension to the traditional type
system of π?, and it does not modify its interesting properties. In particular, we
prove that reduction preserves type judgments.

Theorem 4.1. If Γ ` P : τ and P → P ′, then Γ ` P ′ : τ .

Typing objects.We prove a typed correspondence between concς and the Blue
calculus. To simplify our presentation, we �rst de�ne a special notation for the
type of a denomination. Apart from the use of the operator Reply(.), this type
is analogous to the one obtained in the encoding of Abadi-Cardelli functional
object calculus given by Viswanathan [25] and Sangiorgi [23].

Obj(α.[li : ϑi
i∈1..n])

M

= µα.




. . . i∈1..n

get li : ϑi,
put li : (α → ϑi) → Reply(α),
. . .
clone : Reply(α)




We prove that the object type, Obj(α.%), is the type of the name p in 〈p ←[

D〉. In Obj(α.%), the variable α is called the self-type. We simply write Obj(%)
if the self-type does not appear free in %. We can give derived typing rules for
the objects constructs de�ned in Sect. 3.

Derived typing rules for the embedding of objects

Assume A is the type Obj(α.[li : ϑi∈1..n
i]).

(p : A) ∈ Γ ∀i ∈ 1..n Γ, xi : A ` Pi : ϑi{α←A}
Γ ` 〈p ←[{ li = (λxi)Pi

i∈1..n }〉 : Top
(Proc Obj)

Γ ` P : A j ∈ 1..n Γ, x : A ` Q : ϑj{α←A}
Γ ` (P ·lj ↼↽ (λx)Q) : Reply(A)

(Proc Updt)

Γ ` P : A

Γ ` clone(P) : Reply(A)
(Proc Clone)

Γ ` P : A j ∈ 1..n

Γ ` P ⇐ lj : ϑj{α←A} (Proc Invk)

419An Interpretation of Typed Concurrent Objects in the Blue Calculus

We give only the derivation for method update. Recall that (P ·lj ↼↽ (λx)Q)
denotes the term (P ·put lj (λx)Q). Let A denotes the type Obj(α.[li : ϑi

i∈1..n]).
Suppose that j is in 1..n, that Γ ` P : A, and that Γ, x : A ` Q : ϑj{α←A}.
It follows that Γ ` (λx)Q : (α → ϑj){α←A}, and that Γ ` (P ·putlj) : ((α →
ϑj) → Reply(α)){α←A}. Hence Γ ` (P ·lj ↼↽ (λx)Q) : Reply(A). Note that it is
impossible to extend the object P with a new method, since the set (put lj)j∈1..n

of �elds is �xed. Moreover, like in Abadi-Cardelli calculus of �rst-order objects,
it is impossible to re�ne the type of the updated method. Indeed, the type ϑj

appears in contravariant position in �eld put lj , and in covariant position in �eld
get lj . For the same reason, we can prove that object types are not covariant,
that is % <: σ does not imply Obj(%) <: Obj(σ). However, we prove that width
subtyping between object interfaces is sound.

Lemma 4.1. Obj([li : ϑi
i∈1..n+m]) <: Obj([li : ϑi

i∈1..n]) .

The type system of concς is based on Abadi-Cardelli �rst-order object cal-
culus, Ob1<:, extended with new type constants for expressions, processes and
synchronization. In this system, a clear distinction is made between expressions,
that is terms expected to return results, and processes, that intuitively represent
stores of expressions. Then, the type system is used for two di�erent goals. First,
to guarantee that terms are well formed and that a name cannot be associated
to two di�erent denominations. Second, to avoid runtime errors, which are in-
stances of the so-called �message not understood� problem. In this paper, we
study a version that only guarantee safety of executions, but it is not di�cult to
extend our type system to accommodate the �rst requirement, as in type system
ensuring the �unique receiver� property in π [3].

As in Ob1<:, the basic type constructor is [li : Ai
i∈1..n], the type of objects

with methods li
i∈1..n, returning results of types Ai

i∈1..n respectively. There is
also a constant, Proc, used to type processes, like denominations for example.
The type system is based on a subtyping relation, E ` A <: B, such that Proc
is the maximal type and that [li : Ai

i∈1..n+m] <: [li : Ai
i∈1..n].

[[[li : Ai
i∈1..n]]]

M

= Obj([li : Reply([[Ai]])
i∈1..n

]) [[Proc]]
M

= Top

[[E, x : A]]
M

= [[E]], x : [[A]] [[∅]] M= ∅

Theorem 4.2. The interpretation preserves subtyping judgments: if E ` A<:B,

then [[E]] ` [[A]] <: [[B]]. The interpretation preserves typing judgments: if E `
a : Proc, then [[E]] ` [[a]] : Top. If E ` a : A and A 6= Proc, then [[E]] ` [[a]] :
Reply([[A]]).

In fact, we can prove a more general result than Theorem 4.2 since the
type system for concς does not have recursive types, or self types, while our
interpretation can capture such notions.

There is another modi�cation to concς inspired by our interpretation. It
consists in separating the two distinct roles of process and maximal type, that is
to consider two di�erent constants, Top and Proc, such that Top is the maximal

420 S. Dal Zilio

type and that Proc is used to type denominations. These two roles are collapsed
in concς , as well as in the variant of π? de�ned in this paper. This emphasizes
the fact that, in a parallel composition (a � b), the value of a can never be
communicated to the outside world, and thus only its side e�ects are observable.
The fact that the value returned by a term is lost is not an example of a �runtime
error�, but we can consider that it is a programming mistake and, with our
proposed modi�cation, we can statically catch these mistakes.

5 Two Applications of our Interpretation

A �rst application is the interpretation of synchronization primitives. Although
concς is a concurrent calculus, in the sense that multiple threads of computa-
tion can interact in parallel, it is not obvious how to synchronize these threads.
The approach taken in [13] is to extend concς with operators for mutexes, that
are de�ned as special kinds of denominations. The Blue calculus has a natural
notion of synchronization based on asynchronous communication, exactly like in
π. Therefore, it is not surprising that our interpretation can be easily extended
to model mutexes. What is more interesting is that our interpretation is also
sound with respect to the typing rules for mutexes given in [13], and that mu-
texes appear (again) as a special kind of linearly de�ned resources.

A second application, that is the most original part of this work, is to prove
equational laws between objects using barbed congruence between π?-terms and
our encoding. Let ≈ be the weak barbed congruence relation used in Theo-
rem 3.1. We can use our interpretation to prove that two concς-terms are equiv-
alent, by showing that their translations are equivalent. For example, if p is not
free in d, we prove the following rules (among others):

[[(νp)((p 7→ d) � clone(p))]] ≈ [[(νp)((p 7→ d) � p)]]

[[
(νp)

(
(p 7→ d)�
letx = (p·l ↼↽ ς(y)b) inx·l

)]]
≈

[[
(νp)

(
(p 7→ d)�
let y = (p·l ↼↽ ς(y)b) in b{y←p}

)]]

The �rst rule can be viewed as a concurrent version of an equational law
proved for the imperative ς-calculus in [14], namely (letx = o in clone(x)) ≈ o,
where o is the object (νp)((p 7→ d) � p), and p is not free in d.

An interesting fact is that the proofs of these equalities are very simple.
Indeed, we only need to use �well-known� algebraic laws already proved for π? [7],
like relation (5.1) below, similar to the replication theorem found in [19].

def x = R in (P | Q) ≈ (def x = R inP) | (def x = R inQ) (5.1)

Another interesting fact is that the algebraic laws obtained on concς are still
valid if one extends this calculus with new primitives that can be encoded in π?,
such as mutexes for example. Therefore, it is not necessary to modify the proof
system each time the object calculus is extended.

421An Interpretation of Typed Concurrent Objects in the Blue Calculus

As an example, we sketch the proof of the �rst equality. We use the notation of
Sect. 3. Let Ep[.] be the context such that [[(p 7→ d)]] = Ep[〈p ⇐ R(p, s, ũ, c)〉].

[[(νp)((p 7→ d) � clone(p))]] ≡ (νp)Ep[〈p ⇐ R(p, s, ũ, c)〉 | p ·clone] (1)
≈ (νp)Ep[R(p, s, ũ, c) ·clone] (2)
≈ (νp)Ep[sũ | cũ] (3)
≈ (νp)Ep[sũ | ((λx̃)(νq)(Fobj(q, x̃, c) | reply(q)))ũ] (4)
≈ (νp)Ep[sũ | (νq)(Fobj(q, ũ, c) | reply(q))] (5)
≈ (νp)(Ep[sũ] | (νq)([[(q 7→ d)]] | reply(q))) (6)
≈ (νp)([[(p 7→ d)]] | (νq)([[(q 7→ d)]] | reply(q))) (7)
≈ (νq)([[(q 7→ d)]] | [[q]]) (8)

Step (1) uses an instance of the law: (νu)(〈u ⇐ P 〉 | u) ≈ (νu)P , and step (3)
uses an instance of: (def x = R inx) ≈ (def x = R inR). In step (2) and (4), we
use the fact that selection and β-reduction are deterministic reduction steps.
For example we prove that ((λx)P)a ≈ P{x←a}. In step (5), we use (5.1) to
distribute the de�nitions of Ep[.] over parallel composition, and in step (6) we
use an intermediary result: (νp)Ep[sũ] ≈ (νp)[[(p 7→ d)]], that is implied by the
laws used in step (3) and (4). In step (7), we use a �garbage collection� law
similar to the following law: ((νu)〈u ⇐ P 〉) | Q ≈ Q.

6 Conclusion and Related Work

We have shown how to derive reduction and type judgments of concς in the
Blue calculus in a rather simple and natural way. In our encoding, we model ob-
jects as a particular kind of declarations, 〈p ←[D〉, that are �linearly managed�.
It is interesting to compare these declarations with the consumable declarations,
〈u ⇐ P 〉, used to model processes (of the π-calculus), and with the repli-
cated and immutable declarations, 〈u = P 〉, used to model functions (of the
λ-calculus).

Many theoretical studies address the problem of modeling object-oriented
languages in procedural languages, but few of them have succeeded to preserve
powerful features such as subtyping. In [2], the authors propose a compositional
interpretation of a typed (sequential) object calculus with subtyping into F≤µ,
a λ-calculus with second-order polymorphic types. Viswanathan improved this
result in [25], where he gives a fully abstract interpretation in a �rst-order λ-
calculus with reference cells and records. In both solutions, the encoding relies on
the so-called split method. Fisher and Mitchell [11] proposed another interesting
typed object calculus. However, none of those calculi can model concurrent and
interactive objects.

In [23], Sangiorgi gives the �rst interpretation of Abadi-Cardelli typed func-
tional calculus with subtyping in π (see also [17]). This interpretation is ex-
tended to the imperative case in [18, 21]. These interpretations, and the type
system used, are very di�erent from ours. For example, in the coding of method

422 S. Dal Zilio

update, we do not use relay constructs. Intuitively, in our encoding, the num-
ber of reductions when invoking a method does not depend on the number of
method updates applied on the object. Therefore, if these encoding were used
to implement concurrent objects, we would provide a more e�cient implemen-
tation of method invocation. Another major di�erence is that, in the proof of
the operational correctness property, we do not use a typed bisimulation.

There are also other formalisms used to model concurrent objects, mainly
based on the π-calculus, such as [9, 12, 16, 22, 24], that are not considered in this
paper.

We can compare our work with the proposal of [25], where the author gives
a syntax-oriented interpretation of a typed object calculus. Our approach brings
the same bene�ts as his. In particular, our interpretation de�nes a type-safe
way of implementing higher-order concurrent objects in the Blue calculus, and
therefore in π.

A bene�t of our encoding is that we validate some possible extensions of
concς , like the extension of the type system with recursive types and self-types,
or the extension with a maximal types, say Top, that di�ers from the type
given to processes. Another interesting extension considered in this paper is the
addition of functions and higher-order constructs to concς . Indeed, functions can
be coded in Abadi-Cardelli object calculus, but to simulate the types of functions
in a satisfactory way, they need to use universally and existentially quanti�ed
types to the detriment of type inference [1]. With our approach, we propose
a natural extension of the object calculus with functions without noticeably
modifying the de�nition of the equivalence or the type system, nor the interesting
equational laws. Another bene�t is the study of equational laws between objects.
We give an example of such equational laws at the end of Section 5. It would be
interesting to study the equivalence obtained on concς using barbed congruence
and our encoding.

Acknowledgments. This work took place in the context of collaboration with
Gérard Boudol at INRIA Sophia-Antipolis. He has greatly in�uenced the present
development. I had useful converstions with Andrew Gordon, Paul Hankin, Mas-
simo Merro and Davide Sangiorgi.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

2. M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of objects and

object types. In Proc. of POPL '96, pages 396�409, 1996.
3. R. Amadio and S. Prasad. Localities and failures. In Proc. of FST & TCS '94,

volume 880 of SLNCS, pages 205�216, 1994.
4. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217�248, 1992.
5. G. Boudol. The π-calculus in direct style. Higher-Order and Symbolic Computation,

11:177�208, 1998. Also appeared in Proc. of POPL '97, Jan. 1997.

423An Interpretation of Typed Concurrent Objects in the Blue Calculus

6. L. Cardelli and J. C. Mitchell. Operations on records. Math. Structures in Com-

puter Science, 1(1):3�48, 1991.
7. S. Dal-Zilio. A bisimulation for the Blue calculus. TR 3664, INRIA, Apr. 1999.
8. S. Dal-Zilio. An interpretation of typed concurrent objects in the Blue calculus.

Extended version, available at http://research.microsoft.com/~sdal/, 1999.
9. P. Di Blasio and K. Fisher. A calculus for concurrent objects. In Proc. of CON-

CUR '96, volume 1119 of LNCS, Aug. 1996.
10. W. Ferreira, M. Hennessy, and A. Je�rey. Combining typed λ-calculus with CCS.

In Essays in Honour of Robin Milner. MIT Press, 1998.
11. K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyping.

In Proc. of FCT '95, volume 965 of LNCS, pages 43�61, 1995.
12. C. Fournet and G. Gonthier. The re�exive chemical abstract machine and the

join-calculus. In Proc. of POPL '96, pages 372�385, Jan. 1996.
13. A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and

typing. In Proc. of HLCL '98, Elsevier ENTCS, 1998.
14. A. D. Gordon, P. D. Hankin, and S. B. Lassen. Compilation and equivalence of

imperative objects. In Proc. of FST & TCS '97, volume 1346 of LNCS, Dec. 1997.
15. R. Harper and M. Lillibridge. Polymorphic type assignment and CPS conversion.

LISP and Symbolic Computation, 6:361�380, 1993.
16. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

Proc. of ECOOP '91, volume 512 of LNCS, pages 133�147, 1991.
17. H. Hüttel and J. Kleist. Objects as mobile processes. TR RS-96-38, BRICS, Oct.

1996.
18. J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In Proc. of

PROCOMET '98. North-Holland, 1998.
19. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proc. of

ICALP '98, volume 1443 of LNCS, 1998.
20. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP '92, volume

623 of LNCS, pages 685�695, 1992.
21. U. Nestmann, H. Hüttel, J. Kleist, M. Merro. Aliasing Models for Object Migration.

In Proc. of Euro-Par '99, volume 1685 of LNCS, pages 1353�1368, 1999.
22. B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In Proc.

of TPPP '94, volume 907 of LNCS, pages 187�215, 1995.
23. D. Sangiorgi. An interpretation of typed objects into typed π-calculus. TR 3000,

INRIA, 1996.
24. V. T. Vasconcelos. Typed concurrent objects. In Proc. of ECOOP '94, volume 821

of LNCS, pages 100�117, 1994.
25. R. Viswanathan. Full abstraction for �rst-order objects with recursive types and

subtyping. In Proc. of LICS '98, pages 380�391, 1998.

424 S. Dal Zilio

	Introduction
	The Blue Calculus
	The Calculus
	Structural congruence
	Derived Operators
	Interpretation of the Concurrent Object Calculus
	Type System
	Two Applications of our Interpretation
	Conclusion and Related Work
	Acknowledgments.
	References

