Skip to main content

Mode Estimation Using Pessimistic Scale Space Tracking

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Abstract

Estimation of the mode of a distribution over ℝn from discrete samples is introduced and three methods for its solution are developed and evaluated. The first solution is based on Fréchet’s definition of central tendencies. We show that algorithms based on this approach have only limited success due to the non-differentiability of the Fréchet measures. The second solution is based on tracking maxima through a Scale Space built from the samples. We show that this is more accurate than the Fréchet approach, but that tracking to very fine scales is unwarranted and undesirable. For our third method we analyze the reliability of the information across scale using an exact bootstrap analysis. This leads to a modified version of the Scale Space approach where unreliable information is downgraded (pessimistically) so that tracking into such regions does not occur. This modification improves the accuracy of mode estimation. We conclude with demonstrations on high-dimensional real and synthetic data, which confirm the technique’s accuracy and utility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alimoglu, F., & Alpaydin, E. (1996). Methods of combining multiple classifiers based on different representations for pen-based handwriting recognition. 5th Turkish AI & ANN Symposium (Istanbul.

    Google Scholar 

  • Blake, A., & Zisserman, A. (1987). Visual Reconstruction. (MIT Press.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. (New York, London: Chapman and Hall.

    MATH  Google Scholar 

  • Everitt, B.S., & Hand, D.J. (1981). Finite Mixture Distributions. (London: Chapman Hall.

    MATH  Google Scholar 

  • Fréchet, M. (1948). Les elements aléatoires de nature quelconque dans un espace distancié. Annales de l’Institut Henri Poincaré, X, 215–308.

    Google Scholar 

  • Fukunga, K. (1990). Statistical Pattern Recognition. (New York: Academic Press.

    Google Scholar 

  • Gasser, T., Hall, P., & Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves. Journal of the Royal Statistical Society Series B-Statistical Methodology, 60, 681–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Griffin, L.D. (1995). Descriptions of Image Structure. (London: PhD thesis, University of London.

    Google Scholar 

  • Griffin, L.D. (1997). Scale-imprecision space. Image and Vision Computing, 15(5), 369–398.

    Article  MathSciNet  Google Scholar 

  • Hazelton, M.L. (1999). An optimal local bandwidth selector for kernel density estimation. Journal of Statistical Planning and Inference, 77(1), 37–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Katkovnik, V., & Shmulevich, I. (2002). Kernel density estimation with adaptive varying window size. Pattern Recognition Letters, 23(14), 1641–1648.

    Article  MATH  Google Scholar 

  • Koenderink, J.J. (1993). What is a feature? Journal of Intelligent Systems, 3(1), 49–82.

    MathSciNet  Google Scholar 

  • Marchette, D.J., & Wegman, E.J. (1997). The filtered mode tree. Journal of Computational and Graphical Statistics, 6(2), 143–159.

    Article  MathSciNet  Google Scholar 

  • Minnotte, M.C., Marchette, D.J., & Wegman, E.J. (1998). The bumpy road to the mode forest. Journal of Computational and Graphical Statistics, 7(2), 239–251.

    Article  Google Scholar 

  • Minonotte, M.C., & Scott, D.W. (1993). The Mode Tree: A Tool for visualization of nonparametric density features. J. Comp. & Graph. Statist., 2, 51–68.

    Article  Google Scholar 

  • Parzen, E. (1962). On estimation of probability density function and mode. Annals of Mathematical Statistics, 33, 520–531.

    Article  MathSciNet  Google Scholar 

  • Pedersen, K.S. (submitted). Properties of Brownian Image Models in Scale-Space. In: L.D. Griffin (Ed.) Proc. Scale Space 2003 (Springer.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (2002). Numerical Recipes in C++. (Cambridge: Cambridge University Press.

    Google Scholar 

  • Scott, D.W., Tapia, R.A., & Thompson, J.R. (1977). Kernel density estimation revisited. Nonlinear Analysis, Theory, Methof & Application, 1, 339–372.

    Article  MATH  MathSciNet  Google Scholar 

  • Silverman, B.W. (1981). Using Kernel density Estimates to investigate Multimodality. J. Roy. Statist. Soc. B, 43, 97–99.

    Google Scholar 

  • Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. (London: Chapman Hall.

    MATH  Google Scholar 

  • Tagliati, E., & Griffin, L.D. (2001). Features in Scale Space: Progress on the 2D 2nd Order Jet. In: M. Kerckhove (Ed.) LNCS, 2106 (pp. 51–62): Springer.

    Google Scholar 

  • van Hateren, J.H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London Series B-Biological Sciences, 265(1394), 359–366.

    Article  Google Scholar 

  • Wand, M.P., & Jones, M.C. (1995). Kernel Smoothing. (London: Chapman Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griffin, L.D., Lillholm, M. (2003). Mode Estimation Using Pessimistic Scale Space Tracking. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics