Skip to main content

Properties of Brownian Image Models in Scale-Space

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

In this paper it is argued that the Brownian image model is the least committed, scale invariant, statistical image model which describes the second order statistics of natural images. Various properties of three different types of Gaussian image models (white noise, Brownian and fractional Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix of natural images in jet space. The consequence of these results is that the Brownian image model can be used as a least committed model of the covariance structure of the distribution of natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Blom, B.M. ter Haar Romeny, A. Bel, and J.J. Koenderink. Spatial derivatives and the propagation of noise in Gaussian scale space. J. Vis. Comm. & Im. Repr., 4(1):1–13, 1993.

    Article  Google Scholar 

  2. Z. Chi. Construction of stationary self-similar generalized fields by random wavelet expansion. Probability Theory and Related Fields, 121(2), 269–300 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. J. Optic. Soc. of Am., 4(12):2379–2394, 1987.

    Google Scholar 

  4. L. Florack. Image Structure. Kluwer Academic Publishers, 1997.

    Google Scholar 

  5. L. M. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever. Linear scale-space. Journal of Math. Imaging and Vision, 4(4):325–351, 1994.

    Article  Google Scholar 

  6. G. Friedlander and M. Joshi. Introduction to The Theory of Distributions. Cambridge University Press, 2nd edition, 1998.

    Google Scholar 

  7. U. Grenander and A. Srivastava. Probability models for clutter in natural images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(4):424–429, 2001.

    Article  Google Scholar 

  8. J. Huang and D. Mumford. Statistics of natural images and models. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 1999.

    Google Scholar 

  9. E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620–630, 1957.

    Article  MathSciNet  Google Scholar 

  10. J. J. Koenderink. The structure of images. Biol. Cybern., 50:363–370, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological Cybernetics, 55:367–375, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. A. Lifshits. Gaussian Random Functions. Kluwer Academic Publishers, 1995.

    Google Scholar 

  13. T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):79–116, November 1998.

    Article  Google Scholar 

  14. P. Majer. Self-similarity of noise in scale-space. In Proc. of Scale-Space’99, LNCS 1682, pages 423–428. Springer Verlag, 1999.

    Google Scholar 

  15. S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on PAMI, 11(7):674–693, July 1989.

    MATH  Google Scholar 

  16. B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4):422–437, October 1968.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Mumford. The statistical description of visual signals. In ICIAM’95, 1996.

    Google Scholar 

  18. D. Mumford and B. Gidas. Stochastic models for generic images. Quarterly of Applied Mathematics, 59(11):85–111, March 2001.

    MATH  MathSciNet  Google Scholar 

  19. M. Nielsen and M. Lillholm. What do features tell about images? In Proc. of Scale-Space’01, LNCS 2106, pages 39–50. Springer, 2001.

    Google Scholar 

  20. B. Øksendal. Stochastic Differential Equations. Springer, 5 edition, 2000.

    Google Scholar 

  21. K. S. Pedersen and A. B. Lee. Toward a full probability model of edges in natural images. In Proc. of 7th ECCV, LNCS 2350, pages 328–342. Springer Verlag, 2002.

    Google Scholar 

  22. K. S. Pedersen and M. Nielsen. The Hausdorff dimension and scale-space normalisation of natural images. J. Vis. Comm. & Im. Rep., 11(2):266–277, 2000.

    Article  Google Scholar 

  23. A. P. Pentland. Fractal-based description of natural scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):661–674, November 1984.

    Article  Google Scholar 

  24. D. L. Ruderman and W. Bialek. Statistics of natural images: Scaling in the woods. Physical Review Letters, 73(6):814–817, August 1994.

    Article  Google Scholar 

  25. A. Srivastava, X. Liu, and U. Grenander. Universal analytical forms for modeling image probabilities. IEEE Trans. on PAMI, 24(9):1200–1214, September 2002.

    Google Scholar 

  26. J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. Series B, 265:359–366, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pedersen, K.S. (2003). Properties of Brownian Image Models in Scale-Space. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics