Skip to main content

Axiomatization of Any Residuated Fuzzy Logic Defined by a Continuous T-norm

  • Conference paper
  • First Online:
Fuzzy Sets and Systems — IFSA 2003 (IFSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2715))

Included in the following conference series:

  • 1303 Accesses

Abstract

In this paper we axiomatize the subvarieties of the variety of BL-algebras generated by single BL-chains on [0, 1]. From a logical point of view, this corresponds to find the axiomatization of every residuated many-valued calculus defined by a continuous t-norm and its residdum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aglianó P., Montagna F.: Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra, to appear.

    Google Scholar 

  2. Aglianó P., Ferreirim I.M.A., Montagna F.: Basic hoops: an algebraic study of continuous. t-norms. Studia Logica, to appear.

    Google Scholar 

  3. Blok W.J., Ferreirim I.M.A.: On the structure of hoops, Algebra Universalis 43 (2000) 233–257.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cignoli R., Esteva F., Godo L., Torrens A.: Basic logic is the logic of continuous. t-norms and their residua. Soft Comp. 4 (2000) 106–112.

    Article  Google Scholar 

  5. Esteva F., Godo L., Hájek P., Navara M.: Residuated Fuzzy Logic with an involutive. negation Archive of Mathematical Logic 39 (2000), 103–124.

    Article  MATH  Google Scholar 

  6. Esteva F., Godo L., Montagna F.: Equational characterization of the subvarieties. of BL generated by t-norm algebras. Submitted.

    Google Scholar 

  7. Gottwald S. A traitise on Multiple-valued Logics. Studies in logic and computation. Research Studies Press, Baldock, 2001.

    Google Scholar 

  8. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

    Google Scholar 

  9. Hájek P.: Basic logic and BL-algebras. Soft Computing 2 (1998) 124–128.

    Google Scholar 

  10. Haniková Z.: Standard algebras for fuzzy propositional calculi, Fuzzy Sets and Systems, vol. 123, n.3 (2001), 309–320.

    Article  Google Scholar 

  11. Haniková Z.: A note on propositional tautologies of individual continuous t-norms. Neural Network World vol. 12 n.5 (2002), 453–460.

    Google Scholar 

  12. Klement P., Mesiar R., and Pap L.: Triangular Norms. Kluwer, 2000

    Google Scholar 

  13. Novák V., Perfilieva I. and Močkoř J.: Mathematical Principles of Fuzzy Logic, Kluwer 1999.

    Google Scholar 

  14. Zadeh L.A.: Preface. In Fuzzy Logic Technology and Applications, (R. J. Marks-II Ed.), IEEE Technical Activities Board (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esteva, F., Godo, L., Montagna, F. (2003). Axiomatization of Any Residuated Fuzzy Logic Defined by a Continuous T-norm. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds) Fuzzy Sets and Systems — IFSA 2003. IFSA 2003. Lecture Notes in Computer Science, vol 2715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44967-1_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-44967-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40383-8

  • Online ISBN: 978-3-540-44967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics