Abstract
In this paper we axiomatize the subvarieties of the variety of BL-algebras generated by single BL-chains on [0, 1]. From a logical point of view, this corresponds to find the axiomatization of every residuated many-valued calculus defined by a continuous t-norm and its residdum.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aglianó P., Montagna F.: Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra, to appear.
Aglianó P., Ferreirim I.M.A., Montagna F.: Basic hoops: an algebraic study of continuous. t-norms. Studia Logica, to appear.
Blok W.J., Ferreirim I.M.A.: On the structure of hoops, Algebra Universalis 43 (2000) 233–257.
Cignoli R., Esteva F., Godo L., Torrens A.: Basic logic is the logic of continuous. t-norms and their residua. Soft Comp. 4 (2000) 106–112.
Esteva F., Godo L., Hájek P., Navara M.: Residuated Fuzzy Logic with an involutive. negation Archive of Mathematical Logic 39 (2000), 103–124.
Esteva F., Godo L., Montagna F.: Equational characterization of the subvarieties. of BL generated by t-norm algebras. Submitted.
Gottwald S. A traitise on Multiple-valued Logics. Studies in logic and computation. Research Studies Press, Baldock, 2001.
P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
Hájek P.: Basic logic and BL-algebras. Soft Computing 2 (1998) 124–128.
Haniková Z.: Standard algebras for fuzzy propositional calculi, Fuzzy Sets and Systems, vol. 123, n.3 (2001), 309–320.
Haniková Z.: A note on propositional tautologies of individual continuous t-norms. Neural Network World vol. 12 n.5 (2002), 453–460.
Klement P., Mesiar R., and Pap L.: Triangular Norms. Kluwer, 2000
Novák V., Perfilieva I. and Močkoř J.: Mathematical Principles of Fuzzy Logic, Kluwer 1999.
Zadeh L.A.: Preface. In Fuzzy Logic Technology and Applications, (R. J. Marks-II Ed.), IEEE Technical Activities Board (1994).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Esteva, F., Godo, L., Montagna, F. (2003). Axiomatization of Any Residuated Fuzzy Logic Defined by a Continuous T-norm. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds) Fuzzy Sets and Systems — IFSA 2003. IFSA 2003. Lecture Notes in Computer Science, vol 2715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44967-1_20
Download citation
DOI: https://doi.org/10.1007/3-540-44967-1_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40383-8
Online ISBN: 978-3-540-44967-6
eBook Packages: Springer Book Archive