Skip to main content

Closure Properties of Real Number Classes under Limits and Computable Operators

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1858))

Included in the following conference series:

Abstract

In effective analysis, various classes of real numbers are discussed. For example, the classes of computable, semi-computable, weakly computable, recursively approximable real numbers, etc. All these classes correspond to some kind of (weak) computability of the real numbers. In this paper we discuss mathematical closure properties of these classes under the limit, effective limit and computable function. Among others, we show that the class of weakly computable real numbers is not closed under effective limit and partial computable functions while the class of recursively approximable real numbers is closed under effective limit and partial computable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies A note on recursively approximable real numbers, Research Report on Mathematical Logic, University of Heidelberg, No. 38, September 1998.

    Google Scholar 

  2. C. Calude, P. Hertling, B. Khoussainov, and Y. Wang, Recursive enumerable reals and Chaintin’s-number, in STACS’98, pp596–606.

    Google Scholar 

  3. C. Calude. A characterization of c.e. random reals. CDMTCS Research Report Series 095, March 1999.

    Google Scholar 

  4. G. S. Ceitin A pseudofundamental sequence that is not equivalent to a monotone one. (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 20 1971 263–271, 290.

    MathSciNet  Google Scholar 

  5. G. J. Chaitin A theory of program size formally identical to information theory, J. of ACM., 22(1975), 329–340.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Grzegorczyk. On the definitions of recursive real continuous functions, Fund. Math. 44(1957), 61–71.

    MATH  MathSciNet  Google Scholar 

  7. Ker-I Ko Reducibilities of real numbers, Theoret. Comp. Sci. 31(1984) 101–123.

    Article  MATH  Google Scholar 

  8. Ker-I Ko Complexity Theory of Real Functions, Birkhäuser, Berlin, 1991.

    MATH  Google Scholar 

  9. M. Pour-El & J. Richards Computability in Analysis and Physics. Springer-Verlag, Berlin, Heidelberg, 1989.

    MATH  Google Scholar 

  10. T. A. Slaman. Randomness and recursive enumerability, preprint, 1999.

    Google Scholar 

  11. R. Soare Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  12. R. Soare Recursion theory and Dedekind cuts, Trans, Amer. Math. Soc. 140(1969), 271–294.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Soare Cohesive sets and recursively enumerable Dedekind cuts, Pacific J. of Math. 31(1969), no. 1, 215–231.

    MATH  MathSciNet  Google Scholar 

  14. R. Solovay. Draft of a paper (or series of papers) on Chaitin’s work... done for the most part during the period of Sept.-Dec. 1975, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktoen Heights, New York, May 1975.

    Google Scholar 

  15. E. Specter Nicht konstruktive beweisbare Sätze der Analysis, J. Symbolic Logic 14(1949), 145–158

    Article  MathSciNet  Google Scholar 

  16. K. Weihrauch Computability. EATCS Monographs on Theoretical Computer Science Vol. 9, Springer-Verlag, Berlin, Heidelberg, 1987.

    MATH  Google Scholar 

  17. K. Weihrauch. An Introduction to Computable Analysis. Springer-Verlag, 2000. (to appear).

    Google Scholar 

  18. K. Weihrauch & X. Zheng A finite hierarchy of the recursively enumerable real numbers, MFCS’98 Brno, Czech Republic, August 1998, pp798–806.

    Google Scholar 

  19. K. Weihrauch & X. Zheng Arithmetical hierarchy of ral numbers. in MFCS’99, Szklarska Poreba, Poland, September 1999, pp 23–33.

    Google Scholar 

  20. X. Zheng. Binary enumerability of real numbers. in Computing and Combinatorics, Proc. of COCOON’99, Tokyo, Japan. July 26–28, 1999, pp300–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, X. (2000). Closure Properties of Real Number Classes under Limits and Computable Operators. In: Du, DZ., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds) Computing and Combinatorics. COCOON 2000. Lecture Notes in Computer Science, vol 1858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44968-X_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-44968-X_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67787-1

  • Online ISBN: 978-3-540-44968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics