Skip to main content

The Complexity of Physical Mapping with Strict Chimerism

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1858))

Included in the following conference series:

Abstract

We analyze the algorithmic complexity of physical mapping by hybridization in situations of restricted forms of chimeric errors, which is motivated by typical experimental conditions. The constituents of a chimeric probe always occur in pure form in the data base, too. This problem can be modelled by a variant of the k-consecutive ones problem. We show that even under this restriction the corresponding decision problem is \( \mathcal{N}\mathcal{P} \)-complete. Considering the most important situation of strict 2-chimerism, for the related optimization problem a complete separation between efficiently solvable and \( \mathcal{N}\mathcal{P} \)-hard cases is given based on the sparseness parameters of the clone library. For the favourable case we present a fast algorithm and a data structure that provides an effective description of all optimal solutions to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh, R. Karp, L. Newberg, D. Weisser, Physical mapping of chromosomes: a combinatorial problem in molecular biology, Algorithmica 13, 52–76, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Alizadeh, R. Karp, D. Weisser, G. Zweig, Physical mapping of chromosomes using unique probes, Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms SODA’94, 489–500, 1994.

    Google Scholar 

  3. J. Atkins, M. Middendorf, On physical mapping and the consecutive ones property for sparse matrices, DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science 71, 1996.

    Google Scholar 

  4. K. Booth, G. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Computer and System Sciences 13, 335–379, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Fulkerson, O. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics 15, 835–856, 1965.

    MATH  MathSciNet  Google Scholar 

  6. P. Goldberg, M. Golumbic, H. Kaplan, R. Shamir, Four strikes against physical mapping of DNA, J. Computational Biology 2, 139–152, 1995.

    Article  Google Scholar 

  7. D. Greenberg, S. Istrail, The chimeric mapping problem: Algorithmic strategies and performance evaluation on synthetic genomic data, Computers and Chemistry 18, 207–220, 1994.

    Article  MATH  Google Scholar 

  8. D. Greenberg, S. Istrail, Physical Mapping by STS Hybridization: Algorithmic Strategies and the challenge of Software Evaluation, J. Comp. Biology 2, 219–273, 1995.

    Google Scholar 

  9. M. Garey, D. Johnson, Computers and Intractability: A Guide to NP-Completeness, Freeman, 1979.

    Google Scholar 

  10. M. Garey, D. Johnson, R. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Computing 5, 704–714, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  11. To Know Ourselves. Human Genome Program, U.S. Department of Energy, 1996.

    Google Scholar 

  12. W. Hsu. A simple test for the consecutive ones property, Proc. 3rd Int. Symposium on Algorithms and Computation ISAAC’92, LNCS650, 459–468, 1992.

    Google Scholar 

  13. W. Hsu, On physical mapping algorithms: an error tolerant test for the consecutive ones property, Proc. 3rd Int. Conf. Computing and Combinatorics, COCOON’97, LNCS 1267, 242–250, 1997.

    Google Scholar 

  14. H. Kaplan, R. Shamir, R. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping, Proc. 35th Symp. on Foundations of Computer Science FOCS’94, 780–793, 1994.

    Google Scholar 

  15. N. Korte, R. Möhring. An incremental linear-time algorithm for recognizing interval graphs, SIAM J. Computing 18, 68–81, 1989.

    Article  MATH  Google Scholar 

  16. S. Weis, Das Entscheidungsproblem Physikalische Kartierung mit starkchimerischen Fehlern, Technical Report A-99-05, Med. Uni. Lübeck, Institut für Theoretische Informatik, 1999.

    Google Scholar 

  17. S. Weis, Zur algorithmischen Komplexität des Optimierungsproblems Physikalische Kartierung mit starkchimerischen Fehlern, Technical Report A-99-06, Med. Uni. Lübeck, Institut für Theoretische Informatik, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weis, S., Reischuk, R. (2000). The Complexity of Physical Mapping with Strict Chimerism. In: Du, DZ., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds) Computing and Combinatorics. COCOON 2000. Lecture Notes in Computer Science, vol 1858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44968-X_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-44968-X_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67787-1

  • Online ISBN: 978-3-540-44968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics