Skip to main content

Software Packages

  • Chapter
  • First Online:
Drawing Graphs

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2025))

  • 1909 Accesses

Abstract

The theoretical foundations of graph drawing, presented throughout this book, are interesting, if not absorbing. It is, however, even more interesting with the ability to actually draw some graphs. In this appendix, we list some software packages that should enable the reader to try out many of the algorithms that have been presented. In view of the number of the ever growing number of available programs, we are aware that this list is incomplete and will soon be outdated. Research driven software can evolve rapidly, or be abandoned overnight. The list is intended to support first practical steps in graph drawing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abbott, K. R., and Sarin, S. K. (1994). Experiences with workflow management: Issues for the next generation. In Proceedings of ACM Conference on Computer-Supported Cooperative Work, Workflow and Information Sharing (CSCW’94), pages 113–120.

    Google Scholar 

  • Agarwal, P. K., and Erickson, J. (1997). Geometric range searching and its relatives. Technical Report CS 1997-11, Department of Computer Science, Duke.

    Google Scholar 

  • Agarwal, P. K., van Kreveld, M., and Suri, S. (1998). Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications, 11(3-4):209–218.

    MATH  MathSciNet  Google Scholar 

  • Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of Computer Algorithms. Addison-Wesley.

    Google Scholar 

  • Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications. Prentice Hall.

    Google Scholar 

  • Alpert, C. J., and Kahng, A. B. (1995). Recent directions in netlist partitioning: a survey. INTEGRATION, the VLSI Journal, 19:1–81.

    Article  MATH  Google Scholar 

  • Amtrup, H. H. J., and Jost, U. (1996). What’s in a word graph? Evaluation and enhancement of word lattices. Technical Report Verbmobil-Report 186, University Hamburg, Germany.

    Google Scholar 

  • Andreev, E. M. (1970a). On convex polyhedra in Lobacevskii spaces. Math. USSR-Sb., 10:413–440.

    Article  MATH  Google Scholar 

  • Andreev, E. M. (1970b). On convex polyhedra of finite volume in Lobacevskii space. Math. USSR-Sb., 12:255–259.

    Article  Google Scholar 

  • Auslander, L., and Parter, S. V. (1961). On imbedding graphs in the plane. Journal of Mathematics and Mechanics, 10(3):517–523.

    MATH  MathSciNet  Google Scholar 

  • Baker, K. A., Fishburn, P. C., and Roberts, F. S. (1971). Partial orders of dimension 2. Networks, 2:11–28.

    Article  MathSciNet  Google Scholar 

  • Batagelj, V., Kerzic, D., and Pisanski, T. (1992). Automatic clustering of languages. Computational Linguistics, 18(3):339–352.

    Google Scholar 

  • Berge, C. (1993). Graphs. North Holland, Amsterdam, 3rd edition.

    Google Scholar 

  • Berger, B., and Shor, P. (1990). Approximation algorithms for the maximum acyclic subgraph problem. In Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA’90), pages 236–243.

    Google Scholar 

  • Bertolazzi, P., Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G. (1994a). How to draw a series-parallel digraph. International Journal of Computational Geometry and Applications, 4:385–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Bertolazzi, P., Di Battista, G., and Didimo, W. (1997). Computing orthogonal drawings with the minimum number of bends. In Proceedings of the 5th Workshop on Algorithms and Data Structures (WADS’97), Spinger LNCS 1272, pages 331–344.

    Google Scholar 

  • Bertolazzi, P., Di Battista, G., Liotta, G., and Mannino, C. (1994b). Upward drawings of triconnected digraphs. Algorithmica, 6(12):476–497.

    Article  Google Scholar 

  • Bertolazzi, P., Di Battista, G., Mannino, C., and Tamassia, R. (1993). Optimal upward planarity testing of single-source digraphs. In Proceedings of the 1st European Symposium on Algorithms (ESA’93), Springer LNCS 726, pages 37–48.

    Google Scholar 

  • Bertsekas, D. P. (1998). Network Optimization: Continuous and Discrete Models. Athena Scientific.

    Google Scholar 

  • Biedl, T., Shermer, T., Whitesides, S., and Wismath, S. (1999). Bounds for orthogonal 3D graph drawing. Journal of Graph Algorithms and Applications, 3(4):63–79.

    MATH  MathSciNet  Google Scholar 

  • Biedl, T. C. (1997). Orthogonal Graph Visualization: The Three-Phase Method with Applications. PhD thesis, Rutgers University.

    Google Scholar 

  • Biedl, T. C. (1998). Three approaches to 3D-orthogonal box-drawings. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 30–43.

    Google Scholar 

  • Biedl, T. C., and Kant, G. (1994). A better heuristic for orthogonal graph drawing. In Proceedings of the 2nd European Symposium on Algorithms (ESA’94), Springer LNCS 855, pages 24–35.

    Google Scholar 

  • Biedl, T. C., and Kaufmann, M. (1997). Area-efficient static and incremental graph drawings. In Proceedings of the 5th European Symposium on Algorithms (ESA’97), Springer LNCS 1284, pages 37–52.

    Google Scholar 

  • Biedl, T. C., Madden, B. P., and Tollis, I. G. (1997a). The three-phase method: A unified approach to orthogonal graph drawing. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 391–402.

    Google Scholar 

  • Biedl, T. C., Shermer, T., Whitesides, S., and Wismath, S. (1997b). Orthogonal 3D graph drawing. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 76–86.

    Google Scholar 

  • Blythe, J., McGrath, C., and Krackhardt, D. (1996). The effect of graph layout on inference from social network data. In Proceedings of the 3rd International Symposiom on Graph Drawing (GD’95). Springer LNCS 1027, pages 40–51.

    Google Scholar 

  • Bohringer, K.-F., and Paulisch, F. N. (1990). Using constraints to achieve stability in automatic graph layout algorithms. In Proceedings of the ACM Human Factors in Computing Systems Conference (CHI’90), pages 43–51.

    Google Scholar 

  • Booth, K. S., and Lueker, G. S. (1976). Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13:335–379.

    MATH  MathSciNet  Google Scholar 

  • Borgida, A., Brachman, R., McGuinness, D., and Resnick, L. (1989). CLASSIC: A structural data model for objects. In Proceedings of the 1989 ACMSIGMOD International Conference on Management of Data, pages 59–67.

    Google Scholar 

  • Bose, P., Gomez, F., Ramos, P., and Toussaint, G. (1996). Drawings nice projections of objects in space. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 52-63.

    Google Scholar 

  • Brandenburg, F. J., Himsolt, M., and Rohrer, C. (1996). An experimental comparison of force-directed and randomized graph drawing algorithms. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 76–87.

    Google Scholar 

  • Brandes, U. (1999). Layout of Graph Visualizations. PhD thesis, University of Konstanz. http://www.ub.uni-konstanz/kops/volltexte/1999/255/.

    Google Scholar 

  • Brandes, U., Kenis, P., Raab, J., Schneider, V., and Wagner, D. (1999). Explorations into the visualization of policy networks. Journal of Theoretical Politics, 11(1):75–106.

    Article  Google Scholar 

  • Brandes, U., and Wagner, D. (1997). A Bayesian paradigm for dynamic graph layout. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97), Springer LNCS 1353, pages 236–247.

    Google Scholar 

  • Brandes, U., and Wagner, D. (1998a). Dynamic grid embedding with few bends and changes. In Proceedings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC’98), Springer LNCS 1533, pages 89–98.

    Google Scholar 

  • Brandes, U., and Wagner, D. (1998b). Using graph layout to visualize train interconnection data. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98), Springer LNCS 1547, pages 44–56.

    Google Scholar 

  • Branke, J., Bucher, F., and Schmeck, H. (1997). A genetic algorithm for drawing undirected graphs. In Proceedings of the 3rd Nordic Workshop on Genetic Algorithms and their Applications, pages 193–206.

    Google Scholar 

  • Bridgeman, S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., and Vismara, L. (2000). Turn-regularity and optimal area drawings for orthogonal representations. Computational Geometry: Theory and Applications, 16(1):53–93.

    MATH  MathSciNet  Google Scholar 

  • Bridgeman, S., Fanto, J., Garg, A., Tamassia, R., and Vismara, L. (1997). InteractiveGiotto: An algorithm for interactive orthogonal graph drawing. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97), Springer LNCS 1353, pages 303–308.

    Google Scholar 

  • Bridgeman, S., and Tamassia, R. (1998). Difference metrics for interactive orthogonal graph drawing algorithms. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98), Springer LNCS 1457, pages 57–71.

    Google Scholar 

  • Bruß, I., and Frick, A. (1996). Fast interactive 3-D graph visualization. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 99–110.

    Google Scholar 

  • Cai, J., Han, X., and Tarjan, R. E. (1993). An O(m log n)-time algorithm for the maximal planar subgraph problem. SIAM Journal on Computing, 22:1142–1162.

    Article  MATH  MathSciNet  Google Scholar 

  • Carpano, M. J. (1980b). Automatic display of hierarchized graphs for computer aided decision analysis. IEEE Transactions on Systems, Man, and Cybernetics, SMC-10(11):705–715.

    Article  Google Scholar 

  • Catarci, T. (1995). The assignment heuristic for crossing reduction. IEEE Trans. Syst. Man Cybern., 25(3):515–521.

    Article  Google Scholar 

  • Chaiken, S., and Kleitman, D. J. (1978). Matrix tree theorems. Journal of Combinatorial Theory, Series A, 24:377–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, T., Goodrich, M. T., Kosaraju, S. R., and Tamassia, R. (1996). Optimizing area and aspect ration in straight-line orthogonal tree drawings. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 63–75.

    Google Scholar 

  • Chan, T. M. (1999). A near-linear area bound for drawing binary trees. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 161–168.

    Google Scholar 

  • Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T. (1985). A linear time algorithm for embedding planar graphs using PQ-trees. Journal of Computer and System Sciences, 30:54–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen, J., Friedman, S., Marks, J., and Shieber, S. (1997). Empirical testing of algorithms for variable-sized label placement. In Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pages 415–417.

    Google Scholar 

  • Christensen, J., Marks, J., and Shieber, S. (1993). Algorithms for cartographic label placement. In Proceedings of the American Congress on Surveying and Mapping 1, pages 75–89.

    Google Scholar 

  • Christensen, J., Marks, J., and Shieber, S. (1995). An empirical study of algorithms for point-feature label placement. ACM Transactions on Graphics, 14(3):203–232.

    Article  Google Scholar 

  • Chrobak, M., and Kant, G. (1997). Convex grid drawings of 3-connected planar graphs. International Journal of Computational Geometry and Applications, 7(3):211–224.

    Article  MathSciNet  Google Scholar 

  • Chvátal, V. (1983a). Linear Programming. W. H. Freeman.

    Google Scholar 

  • Closson, M., Everett, H., Gartshore, S., and Wismath, S. (1998). Arrangepak, orthopak and vispak 2.0. Technical Report TR-CS-98, University of Lethbridge.

    Google Scholar 

  • Coffman, E. G., and Graham, R. L. (1972). Optimal scheduling for two processor systems. Acta Informatica, 1:200–213.

    Article  MathSciNet  Google Scholar 

  • Cohen, J. D. (1997). Drawing graphs to convey proximity: An incremental arrangement method. ACM Transactions on Computer-Human Interaction, 4(3):197–229.

    Article  Google Scholar 

  • Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G. (1995). Dynamic graph drawings: Trees, series-parallel digraphs, and planar st-digraphs. SIAM Journal on Computing, 24(5):970–1001.

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, R. F., Di Battista, G., Tamassia, R., Tollis, I. G., and Bertolazzi, P. (1992). A framework for dynamic graph drawing. In Proceedings of the 8th ACM Annual Symposium on Computational Geometry (SCG’92), pages 261–270.

    Google Scholar 

  • Colin de Verdière, Y. (1989). Empilements de cercles: convergence d’une methode de point fixe. Forum Mathematicum, 1:395–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms. The MIT Electrical Engineering and Computer Science Series. The MIT Press and McGraw-Hill Book Company.

    Google Scholar 

  • Crescenzi, P., Di Battista, G., and Piperno, A. (1992). A note on optimal area algorithms for upward drawings of binary trees. Computational Geometry: Theory and Applications, 2:187–200.

    MATH  MathSciNet  Google Scholar 

  • Crescenzi, P., and Piperno, A. (1995). Optimal-area upward drawings of AVLtrees. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 307–317.

    Google Scholar 

  • Cruz, I. F., and Twarog, J. P. (1996). 3D graph drawing with simulated annealing. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 162–165.

    Google Scholar 

  • Cunningham, W. H. (1976). A network simplex method. Mathematical Programming, 11:105–116.

    Article  MATH  MathSciNet  Google Scholar 

  • Czyzowicz, J. (1991). Lattice diagrams with few slopes. Journal of Combinatorial Theory, Series A, 56:96–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Czyzowicz, J., Pelc, A., and Rival, I. (1990). Drawing orders with few slopes. Discrete Mathematics, 82:233–250.

    Article  MATH  MathSciNet  Google Scholar 

  • Dai, W. W.-M., and Kuh, E. S. (1987). Global spacing of building-block layout. In Proceedings of the IFIP International Conference on Very Large Scale Integration (VLSI’87), pages 193–205.

    Google Scholar 

  • Datta, A., Lenhof, H.-P., Schwarz, C., and Smid, M. H. M. (1993). Static and dynamic algorithms for k-point clustering problems. In Proceedings of the 3rd Workshop on Algorithms and Data Structures (WADS’93), Springer LNCS 709, pages 265–276.

    Google Scholar 

  • Davidson, R., and Harel, D. (1996). Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics, 15(4):301–331.

    Article  Google Scholar 

  • de Fraysseix, H., Pach, J., and Pollack, R. (1990). How to draw a planar graph on a grid. Combinatorica, 10:41–51.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1994). Algorithms for drawing graphs: An annotated bibliography. Computational Geometry, 4:235–282.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1999). Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.

    Google Scholar 

  • Di Battista, G., Liotta, G., and Vargiu, F. (1998a). Spirality and optimal orthogonal drawings. SIAM Journal on Computing, 27(6):1764–1811.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., Liu, W. P., and Rival, I. (1990). Bipartite graphs, upward drawings, and planarity. Information Processing Letters, 36(6):317–322.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., Patrignani, M., and Vargiu, F. (1998b). A split & push approach to 3-D orthogonal drawing. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 87-101.

    Google Scholar 

  • Di Battista, G., and Tamassia, R. (1988). Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science, 61(2-3):175–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., and Tamassia, R. (1989). Incremental planarity testing. In Proceedings of the 30th Symposium on the Foundations of Computer Science (FOCS’89), pages 436–441.

    Google Scholar 

  • Di Battista, G., and Tamassia, R. (1990). On-line graph algorithms with SPQR-trees. In Proceedings of the 17th International Colloqium on Automata, Languages and Programming (ICALP’90), Springer LNCS 443, pages 598–611.

    Chapter  Google Scholar 

  • Di Battista, G., and Tamassia, R. (1996). On-line planarity testing. SIAM Journal on Computing, 25(5):956–997.

    Article  MATH  MathSciNet  Google Scholar 

  • Di Battista, G., and Vismara, L. (1993). Angles of planar triangulated graphs. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (STOC’93), pages 431–437.

    Google Scholar 

  • Di Battista, G., and Vismara, L. (1996). Angles of planar triangulated graphs. SIAM Journal on Discrete Mathematics, 9(3):349–359.

    Article  MATH  MathSciNet  Google Scholar 

  • Didimo, W., and Liotta, G. (1998). Computing orthogonal drawings in a variable embedding setting. In Proceedings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC’98), Springer LNCS 1533, pages 79–88.

    Google Scholar 

  • Dietz, P. F., and Sleator, D. D. (1987). Two algorithms for maintaining order in a list. In Proceedings of the 19th Annual ACM Symposium of Theory of Computing (STOC’87), pages 365–372.

    Google Scholar 

  • Djidjev, H. N. (1995). A linear algorithm for the maximal planar subgraph problem. In Proceedings of the 4th Workshop on Algorithms and Data Structures (WADS’95). Springer LNCS 955, pages 369–380.

    Google Scholar 

  • Doddi, S., Mararthe, M. V., Mirzaian, A., Moret, B. M. E., and Zhu, B. (1999). Map labeling and its generalizations. Technical Report LA-UR-96-2411, Los Alamos National Labatory.

    Google Scholar 

  • Doddi, S., Marathe, M. V., Mirzaian, A., Moret, B.M. E., and Zhu, B. (1997). Map labeling and its generalizations. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 148–157.

    Google Scholar 

  • Dresbach, S. (1995). A new heuristic layout algorithm for directed acyclic graphs. In Operations Research Proceedings 1994, pages 121–126.

    Google Scholar 

  • Duncan, C. A., Goodrich, M. T., and Kobourov, S. G. (1998). Balanced aspect ratio trees and their use for drawing very large graphs. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 111–124.

    Google Scholar 

  • Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 42:149–160.

    MathSciNet  Google Scholar 

  • Eades, P., Cohen, R. F., and Huang, M. L. (1997a). Online animated graph drawing for Web navigation. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97), Springer LNCS 1353, pages 330–335.

    Google Scholar 

  • Eades, P., and Feng, Q. W. (1996). Multilevel visualization of clustered graphs. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 101–112.

    Google Scholar 

  • Eades, P., and Feng, Q. W. (1997). Drawing clustered graphs on an orthogonal grid. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 146–157.

    Google Scholar 

  • Eades, P., Feng, Q.W., and Lin, X. (1996a). Straight-line drawing algorithms for hierarchical graphs and clustered graphs. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 113–128.

    Google Scholar 

  • Eades, P., Feng, Q., and Nagamochi, H. (1999). Drawing clustered graphs on an orthogonal grid. Journal on Graph Algorithms and Applications, 3(4):3–29.

    MATH  MathSciNet  Google Scholar 

  • Eades, P., Huang, M. L., and Wang, J. (1997b). Online animated graph drawing using a modified spring algorithm. Technical Report 97-05, Department of Computer Science and Software Engineering, University of Newcastle.

    Google Scholar 

  • Eades, P., and Kelly, D. (1986). Heuristics for reducing crossings in 2-layered networks. Ars Combinatorica, 21.A:89–98.

    MathSciNet  Google Scholar 

  • Eades, P., Lai, W., Misue, K., and Sugiyama, K. (1991). Preserving the mental map of a diagram. In Proceedings of Compugraphics’ 91, pages 24–33.

    Google Scholar 

  • Eades, P., and Lin, X. (1995). A new heuristic for the feedback arc set problem. Australian Journal of Combinatorics, 12:15–26.

    MATH  MathSciNet  Google Scholar 

  • Eades, P., Lin, X., and Smyth, W. F. (1993). A fast and effective heuristic for the feedback arc set problem. Information Processing Letters, 47:319–323.

    Article  MATH  MathSciNet  Google Scholar 

  • Eades, P., and Marks, J. (1995). Graph drawing contest report. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94), Springer LNCS 894, pages 143–146.

    Google Scholar 

  • Eades, P., and Marks, J. (1996). Graph-drawing contest report. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 224–233.

    Google Scholar 

  • Eades, P., Marks, J., and North, S. C. (1996). Graph-drawing contest report. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96), Springer LNCS 1190, pages 129–138.

    Google Scholar 

  • Eades, P., Marks, J., and North, S. C. (1997c). Graph-drawing contest report. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97), Springer LNCS 1353, pages 438–445.

    Google Scholar 

  • Eades, P., Marks, J., Mutzel, P., and North, S. C. (1998). Graph drawing contest report. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98), Springer LNCS 1547, pages 423–435.

    Google Scholar 

  • Eades, P., Nagamochi, H., and Feng, Q. (1998). Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Technical Report 98-03, Department of Computer Science and Software Engineering, University of Newcastle, Australia. Available at ftp://ftp.cs.newcastle.edu.au/pub/techreports/tr98-03.ps.Z.

  • Eades, P., Stirk, C., and Whitesides, S. (1996). The techniques of Kolmogorov and Bardzin for three-dimensional orthogonal graph drawing. Information Processing Letters, 60(2):97–103. University.

    Article  MATH  MathSciNet  Google Scholar 

  • Eades, P., and Sugiyama, K. (1990). How to draw a directed graph. Journal of Information Processing, 13:424–437.

    MATH  Google Scholar 

  • Eades, P., Symvonis, A., and Whitesides, S. (1996b). Two algorithms for three dimensional orthogonal graph drawing. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 139–154.

    Google Scholar 

  • Eades, P., Symvonis, A., and Whitesides, S. (2000). Three-dimensional orthogonal graph drawing. Discrete Applied Mathematics, 103(1-3):55–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Eades, P., and Whitesides, S. (1994). Drawing graphs in two layers. Theoretical Computer Science, 131(2):361–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Eades, P., and Wormald, N. C. (1990). Fixed edge-length graph drawing is NP-hard. Discrete Applied Mathematics, 28:111–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Eades, P., and Wormald, N. C. (1994). Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Edmondson, S., Christensen, J., Marks, J., and Shieber, S. (1997). A general cartographic labeling algorithm. Cartographica, 33(4):13–23.

    Google Scholar 

  • Eiglsperger, M., Foßmeier, U., and Kaufmann, M. (2000). Orthogonal graph drawing with constraints. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages 3–11.

    Google Scholar 

  • Eppstein, D., and Erickson, J. (1994). Iterated nearest neighbors and finding minimal polytopes. Discrete Computational Geometry, 11:321–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Even, S. (1979). Graph Algorithms. Pitman.

    Google Scholar 

  • Even, S., and Tarjan, R. E. (1976). Computing an st-numbering. Theoretical Computer Science, 2:436–441.

    Article  MathSciNet  Google Scholar 

  • Faria, L., De Figueiredo, C. M. H., and Mendonca, C. F. X. (1998). Splitting number is NP-complete. Proceedings of the 24th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’98), Springer LNCS 1517, pages 285–297.

    Google Scholar 

  • Fekete, S. P., and Meijer, H. (1999). Rectangle and box visibility graphs in 3D. International Journal of Computational Geometry and Applications, 9(1):1–27.

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, Q. (1997). Algorithms for Drawing Clustered Graphs. PhD thesis, University of Newcastle. http://www.cs.newcastle.edu.au/Dept/theses.html.

  • Feng, Q.-W., Cohen, R. F., and Eades, P. (1995). Planarity for clustered graphs. In Proceedings of the 3rd European Symposium on Algorithms (ESA’95). Springer LNCS 979, pages 213–226.

    Google Scholar 

  • Fialko, S., and Mutzel, P. (1998). A new approximation algorithm for the planar augmentation problem. In Proceedings of the 9th Annual ACMSIAM Symposium on Discrete Algorithms (SODA’98), pages 260–269.

    Google Scholar 

  • Fisk, C. J., Caskey, D. L., and West, L. E. (1967). ACCEL: Automated circuit card etching layout. Proceedings of the IEEE, 55(11):1971–1982.

    Article  Google Scholar 

  • Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer Graphics, 2nd edition. Addison-Wesley.

    Google Scholar 

  • Force, A. C. G. I. T. (1996). Application challenges to computational geometry. Technical Report TR-521-96, Princeton University.

    Google Scholar 

  • Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F. T., Simvonis, A., Welzl, E., and Woeginger, G. (1990). Drawing graphs in the plane with high resolution. In Proceedings of the 31st Symposium on the Foundations of Computer Science (FOCS’90), pages 86–95.

    Google Scholar 

  • Formann, M., and Wagner, F. (1991). A packing problem with applications to lettering of maps. In Proceedings of the 7th Annual Symposium on Computational Geometry (SCG’ 91), pages 281–288.

    Google Scholar 

  • Formella, A., and Keller, J. (1995). Generalized fisheye views of graphs. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 242–253.

    Google Scholar 

  • Foßmeier, U. (1997a). Interactive orthogonal graph drawing: Algorithms and bounds. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 111–123.

    Google Scholar 

  • Foßmeier, U. (1997b). Orthogonale Visualisierungstechniken fur Graphen. PhD thesis, Eberhard-Karls-Universitat zu Tubingen.

    Google Scholar 

  • Foßmeier, U., Heß, C., and Kaufmann, M. (1998). On improving orthogonal drawings: The 4M-algorithm. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 125–137.

    Google Scholar 

  • Foßmeier, U., Kant, G., and Kaufmann, M. (1996). 2-visibility drawings of planar graphs. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 155–168.

    Google Scholar 

  • Foßmeier, U., and Kaufmann, M. (1995). Drawing high degree graphs with low bend numbers. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 254–266.

    Google Scholar 

  • Foulds, L. R., Gibbons, P. B., and Giffin, J. W. (1985). Facilities layout adjacency determination: An experimental comparison of three graph theoretic heuristics Operations Research, 33:1091–1106.

    MATH  Google Scholar 

  • Foulds, L. R., and Robinson, D. F. (1978). Graph theoretic heuristics for the plant layout problem. International Journal of Production Research, 16:27–37.

    Article  Google Scholar 

  • Fowler, R. J., Paterson, M. S., and Tanimoto, S. L. (1981). Optimal packing and covering in the plane are NP-complete. Information Processing Letters, 12(3):133–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Freeman, L. C. (1999a). The social network graphics source. School of Social Science, University of California Irvine. http://eclectic.ss.uci.edu/~lin/gallery.html.

  • Freeman, L. C. (1999b). Using molecular modeling software in social network analysis: A practicum. School of Social Science, University of California Irvine. http://eclectic.ss.uci.edu/~lin/chem.html.

  • Freuder, E. C., and Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelligence, 58(1-3):21–70.

    Article  MathSciNet  Google Scholar 

  • Frick, A. (1997). Upper bounds on the number of hidden nodes in Sugiyama’s algorithm. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 169–183.

    Google Scholar 

  • Frick, A., Ludwig, A., and Mehldau, H. (1995). A fast adaptive layout algorithm for undirected graphs. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 388–403.

    Google Scholar 

  • Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph-drawing by forcedirected placement. Software-Practice and Experience, 21(11):1129–1164.

    Article  Google Scholar 

  • Gansner, E. R., Koutsofios, E., North, S. C., and Vo, K.-P. (1993). A technique for drawing directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230.

    Article  Google Scholar 

  • Ganter, B., and Wille, R. (1999). Formal Concept Analysis-Mathematical Foundations. Springer.

    Google Scholar 

  • Garey, M. R., and Johnson, D. S. (1983). Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 4(3):312–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Garey, M. R., and Johnson, D. S. (1991). Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co.

    Google Scholar 

  • Garg, A., Goodrich, M. T., and Tamassia, R. (1996). Planar upward tree drawings with optimal area. International Journal Computational Geometry and Applications, 6:333–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Garg, A., and Tamassia, R. (1993). Efficient computation of planar straightline upward drawings. In Graph Drawing’ 93 (Proc. ALCOM Workshop on Graph Drawing).

    Google Scholar 

  • Garg, A., and Tamassia, R. (1994). Planar drawings and angular resolution: Algorithms and bounds. In Proceedings of the 2nd European Symposium on Algorithms (ESA’94). Springer LNCS 855, pages 12–23.

    Google Scholar 

  • Garg, A., and Tamassia, R. (1995a). On the computational complexity of upward and rectilinear planarity testing. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 286–297.

    Google Scholar 

  • Garg, A., and Tamassia, R. (1995b). Upward planarity testing. Order, 12:109–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Garg, A., and Tamassia, R. (1996a). GIOTTO3D: A system for visualizing hierarchical structures in 3D. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 193–200.

    Google Scholar 

  • Garg, A., and Tamassia, R. (1996b). A new minimum cost flow algorithm with applications to graph drawing. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 201-216.

    Google Scholar 

  • Garg, A., and Tamassia, R. (1997). A new minimum cost flow algorithm with applications to graph drawing. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 201-216.

    Google Scholar 

  • Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases, 3(2):119–153.

    Article  Google Scholar 

  • German Research Center for Artificial Intelligence GmbH (1999). The Verbmobil project. http://www.dfki.de/verbmobil.

  • Godehardt, E. (1988). Graphs as Structural Models, Advances in System Analysis 4. Vieweg.

    Google Scholar 

  • Goldberg, A. V., and Kennedy, R. (1995). An efficient cost scaling algorithm for the assignment problem. Mathematical Programming, 71:153–178.

    MathSciNet  Google Scholar 

  • Goldstein, A. J. (1963). An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. In Graph and Combinatorics Conference, Contract No. NONR 1858-(21). Princeton University.

    Google Scholar 

  • Grotschel, M., Junger, M., and Reinelt, G. (1985). On the acyclic subgraph polytope. Mathematical Programming, 33(1):28–42.

    Article  MathSciNet  Google Scholar 

  • Gutwenger, C., and Mutzel, P. (1998). Planar polyline drawings with good angular resolution. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 167–182.

    Google Scholar 

  • Hayashi, K., Inoue, M., Masuzawa, T., and Fujiwara, H. (1998). A layout adjustment problem for disjoint rectangles preserving orthogonal order. In Proceedings of the 6th International Symposium on Graph Drawing, number 1547 in LNCS, pages 183–197.

    Google Scholar 

  • He, W., and Marriott, K. (1998). Constrained graph layout. Constraints, 3(4):289–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Herdeg, W., editor (1981). Diagrams. Graphis Press Corporation.

    Google Scholar 

  • Hermansson, K., and Ojamae, L. (1994). MOVIEMOL-An easy-to-use molecular display and animation program. Technical Report UUIC-B19-500, Institute of Chemistry, University of Uppsala.

    Google Scholar 

  • Hochbaum, D. S. (1995). Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston.

    Google Scholar 

  • Hochbaum, D. S., and Maass, W. (1985). Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM, 32(1):130–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1998). Drawing algorithms for series-parallel digraphs in two and three dimensions. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 198–209.

    Google Scholar 

  • Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1999a). Drawing seriesparallel digraphs symmetrically. To appear in International Journal of Computational Geometry and Applications.

    Google Scholar 

  • Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1999b). A three dimensional drawing algorithm for series-parallel graphs. Manuscript.

    Google Scholar 

  • Hopcroft, J., and Tarjan, R. E. (1974). Efficient planarity testing. Journal of the ACM, 21:549–568.

    Article  MATH  MathSciNet  Google Scholar 

  • Hopcroft, J. E., and Tarjan, R. E. (1973). Dividing a graph into triconnected components. SIAM Journal on Computing, 2(3):135–158.

    Article  MathSciNet  Google Scholar 

  • Hsu, W.-L. (1995). A linear time algorithm for finding maximal planar subgraphs. In Proceedings of the 6th International Symposium on Algorithms and Computation (ISAAC’95). Springer LNCS 1004, pages 352–361.

    Google Scholar 

  • Huang, M. L., and Eades, P. (1998a). A fully animated interactive system for clustering and navigating huge graphs. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98), Springer LNCS 1547, pages 374–383.

    Google Scholar 

  • Hughes, J. G. (1993). Object-Oriented Databases. International Series in Computer Science. Prentice-Hall.

    Google Scholar 

  • Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD-Visual molecular dynamics. Journal of Molecular Graphics, 14(1):33–38.

    Article  Google Scholar 

  • Hutton, M. D., and Lubiw, A. (1991). Upward planar drawing of single source acyclic digraphs. In Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA’91), pages 203–211.

    Google Scholar 

  • Imai, H., and Asano, T. (1983). Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. Journal of Algorithms, 4:310–323.

    Article  MATH  MathSciNet  Google Scholar 

  • Imai, H., and Asano, T. (1986). Efficient algorithms for geometric graph search problems. SIAM Journal on Computing, 15(2):478–494.

    Article  MATH  MathSciNet  Google Scholar 

  • Imhof, E. (1962). Die Anordnung der Namen in der Karte. International Yearbook of Cartography, 2:93–129.

    Google Scholar 

  • Imhof, E. (1975). Positioning names on maps. The American Cartographer, 2(2):128–144.

    Google Scholar 

  • Indermark, K., Thomas, W., Huch, F., Leucker, M., and Noll, T. (1999). Various texts about the TRUTH system for modelling concurrent systems, Lehrstuhl fur Informatik II, RWTH Aachen. <http://www-i2.informatik.rwth-aachen.de/Forschung/MCS/>.

  • Isoda, S., Shimomura, T., and Ono, Y. (1987). VIPS: A visual debugger. IEEE Software, 4(3):8–19.

    Article  Google Scholar 

  • Iturriaga, C., and Lubiw, A. (1997). NP-hardness of some map labeling problems. Technical Report CS-97-18, University of Waterloo.

    Google Scholar 

  • Jain, A. K., and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall.

    Google Scholar 

  • Johnson, D. S. (1982). The NP-completeness column: An ongoing guide. Journal of Algorithms, 3:89–99.

    Article  MATH  MathSciNet  Google Scholar 

  • Junger, M., Lee, E. K., Mutzel, P., and Odenthal, T. (1997). A polyhedral approach to the multi-layer crossing minimization problem. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 13–24.

    Google Scholar 

  • Junger, M., and Mutzel, P. (1996). Maximum planar subgraphs and nice embeddings: Practical layout tools. Algorithmica, 16:33–59.

    MathSciNet  Google Scholar 

  • Junger, M., and Mutzel, P. (1997). 2-Layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal on Graph Algorithms and Applications, 1(1):1–25.

    MathSciNet  Google Scholar 

  • Kakoulis, K. G., and Tollis, I. G. (1996). On the edge label placement problem. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 241–256.

    Google Scholar 

  • Kakoulis, K. G., and Tollis, I. G. (1997). An algorithm for labeling edges of hierarchical drawings. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 169–180.

    Google Scholar 

  • Kakoulis, K. G., and Tollis, I. G. (1998a). On the multiple label placement problem. In Proceedings of the 10th Canadian Conference on Computational Geometry (CCCG’98), pages 66–67.

    Google Scholar 

  • Kakoulis, K. G., and Tollis, I. G. (1998b). A unified approach to labeling graphical features. In Proceedings of the 14th Annual ACM Symposium on Computional Geometry (SCG’98), pages 347–356.

    Google Scholar 

  • Kamada, T., and Kawai, S. (1988). A simple method for computing general positions in displaying three-dimensional objects. Computer Vision, Graphics and Image Processing, 41:43–56.

    Article  Google Scholar 

  • Kamada, T., and Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Kant, G. (1996). Drawing planar graphs using the canonical ordering. Algorithmica, 16:4–32.

    MATH  MathSciNet  Google Scholar 

  • Kant, G., and Bodlaender, H. L. (1991). Planar graph augmentation problems. In Proceedings of the 2nd Workshop on Algorithms and Data Structures (WADS’91), Springer LNCS 519, pages 286–298.

    Chapter  Google Scholar 

  • Karp, R. (1972). Reducibility among combinatorical problems. In Complexity of Computer Computations, pages 85–103. Plenum Press.

    Google Scholar 

  • Kato, T., and Imai, H. (1988). The NP-completeness of the character placement problem of 2 or 3 degrees of freedom. In Record of Joint Conference of Electrical and Electronic Engineers in Kyushu, page 1138.

    Google Scholar 

  • Keahey, T. A., and Robertson, E. (1996). Techniques for non-linear maginifaction transformations. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis’96), pages 38–45.

    Google Scholar 

  • Kedem, G., and Watanabe, H. (1984). Graph optimization techniques for IC-layout and compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, CAD-3(1):12–20.

    Article  Google Scholar 

  • Kelly, D., and Rival, I. (1975). Planar lattices. Canadian Journal of Mathematics, 27:636–665.

    MATH  MathSciNet  Google Scholar 

  • Kenis, P. (1999). Analysing social network data by means of visualisation techniques. Paper presented at the 19th International Conference on Social Network Analysis (Sunbelt XIX), Charleston.

    Google Scholar 

  • Kernighan, B. W., and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291–307.

    Google Scholar 

  • Kirchhoff, G. R. (1847). Uber die Auflosung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Strome gefuhrt wird. Annalen der Physik und Chemie, 72:497–508.

    Article  Google Scholar 

  • Klau, G. W., and Mutzel, P. (1998). Quasi-orthogonal drawing of planar graphs. Technical Report 98-1-013, Max-Planck-Institut fur Informatik, Saarbrucken.

    Google Scholar 

  • Klau, G. W., and Mutzel, P. (1999a). Combining graph labeling and compaction. In Proceedings of the 7th International Symposium on Graph Drawing (GD’99). Springer LNCS 1731, pages 27–37.

    Google Scholar 

  • Klau, G. W., and Mutzel, P. (1999b). Optimal compaction of orthogonal grid drawings. In Integer Programming and Combinatorial Optimization (IPCO’99). Springer LNCS 1610, pages 304–319.

    Chapter  Google Scholar 

  • Knipping, L. (1998). Beschriftung von Linienzugen. Diplomarbeit, Fachbereich Mathematik und Informatik, Freie Universitat Berlin.

    Google Scholar 

  • Knuth, D. E., and Raghunathan, A. (1992). The problem of compatible representatives. SIAM Journal on Discrete Mathematics, 5(3):422–427.

    Article  MATH  MathSciNet  Google Scholar 

  • Koebe, P. (1936). Kontaktprobleme auf der konformen Abbildung. Berichte uber die Verhandlungen der Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physikalische Klasse, 88:141–164.

    Google Scholar 

  • Kolmogorov, A. N., and Bardzin, Y. M. (1967). About realization of sets in 3-dimensional space. Problems in Cybernetics, pages 261–268.

    Google Scholar 

  • Kosak, C., Marks, J., and Shieber, S. (1994). Automating the layout of network diagrams with specified visual organization. IEEE Transactions on Systems, Man and Cybernetics, 24(3):440–454.

    Article  Google Scholar 

  • Krackhardt, D., Blythe, J., and McGrath, C. (1994). KrackPlot 3.0: An improved network drawing program. Connections, 17(2):53–55.

    Google Scholar 

  • Kruskal, J. B., and Wish, M. (1978). Multidimensional Scaling. Sage University Paper Series on Quantitative Applications in the Social Sciences 07–011.

    Google Scholar 

  • Kucera, L., Mehlhorn, K., Preis, B., and Schwarzenecker, E. (1993). Exact algorithms for a geometric packing problem. Proceedings of the 10th Symposium on the Theoretical Aspects of Computer Science (STACS’93). Springer LNCS 665, pages 317–322.

    Google Scholar 

  • Kumar, A., and Fowler, R. H. (1994). A spring modelling algorithm to position nodes of an undirected graph in three dimensions. Technical report, Department of Computer Science, University of Texas.

    Google Scholar 

  • Laguna, M., and Martí, R. (1999). Grasp and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 11(1):44–52.

    MATH  Google Scholar 

  • Laguna, M., Martí, R., and Valls, V. (1997). Arc crossing minimization in hierarchical digraphs with tabu search. Computers and Operations Research, 24(12):1175–1186.

    Article  MATH  MathSciNet  Google Scholar 

  • Lam, S., and Sethi, R. (1977). Worst case analysis of two scheduling problems. SIAM Journal on Computing, 6:518–536.

    Article  MATH  MathSciNet  Google Scholar 

  • LaPaugh, A. S. (1998). VLSI Layout Algorithms. In Algorithms and Theory of Computation Handbook. CRC Press.

    Google Scholar 

  • Leiserson, C. E. (1980). Area-efficient graph layouts (for VLSI). In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS’80), pages 270–281.

    Google Scholar 

  • Lempel, A., and Cederbaum, I. (1966). Minimum feedback arc and vertex sets of a directed graph. IEEE Transactions on Circuit Theory, CT-13(4):339–403.

    MathSciNet  Google Scholar 

  • Lempel, A., Even, S., and Cederbaum, I. (1967). An algorithm for planarity testing of graphs. In Theory of Graphs: International Symposium (Rome 1966), pages 215–232. Gordon and Breach.

    Google Scholar 

  • Lengauer, T. (1989). Hierarchical planarity testing algorithms. Journal of the ACM, 36:474–509.

    Article  MATH  MathSciNet  Google Scholar 

  • Lengauer, T. (1990). Combinatorial Algorithms for Integrated Circuit Layout. Applicable Theory in Computer Science. B. G. Teubner and John Wiley & Sons.

    Google Scholar 

  • Leung, J. (1992). A new graph-theoretic heuristic for facility layout. Management Science, 38(4):594–605.

    MATH  Google Scholar 

  • Lewis, J. M., and Yannakakis, M. (1980). The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230.

    Article  MATH  MathSciNet  Google Scholar 

  • Liebers, A. (1996). Methods for planarizing graphs-A survey and annotated bibliography. Technical Report Konstanzer Schriften in Mathematik und Informatik Nr. 12, Fakultat fur Mathematik und Informatik, Universitat Konstanz. ISSN 1430-3558. To appear in Journal on Graph Algorithms and Applications.

    Google Scholar 

  • Lin, X. (1992). Analysis of Algorithms for Drawing Graphs. PhD thesis, University of Queensland.

    Google Scholar 

  • Lino, P., Martí, R., and Valls, V. (1996). A branch and bound algorithm for minimizing the number of crossing arcs in bipartite graphs. Journal of Operational Research, 90:303–319.

    Article  MATH  Google Scholar 

  • Lipton, R. J., Rose, D. J., and Tarjan, R. E. (1979). Generalized nested dissection. SIAM Journal on Numerical Analysis, 16:346–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Lipton, R. J., and Tarjan, R. E. (1970). A seperator theorem for planar graphs. In Proceedings of the Conference on Theoretical Computer Science, pages 1–10.

    Google Scholar 

  • Liu, P. C., and Geldmacher, R. C. (1977). On the deletion of nonplanar edges of a graph. In Proceedings of the 10th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 727–738.

    Google Scholar 

  • Lyons, K. A. (1992). Cluster busting in anchored graph drawing. In Proceedings of the’ 92 CAS Conference (CASCON’92), pages 7–17.

    Google Scholar 

  • Lyons, K. A., Meijer, H., and Rappaport, D. (1998). Algorithms for cluster busting in anchored graph drawing. Journal on Graph Algorithms and Applications, 2(1):1–24.

    MathSciNet  Google Scholar 

  • Mackworth, A. K., and Freuder, E. C. (1985). The complexity of some polynomial network consistency algorithms for constraint satisfaction problem. Artificial Intelligence, 25(1):65–74.

    Article  Google Scholar 

  • Makinen, E. (1990). Experiments on drawing 2-level hierarchical graphs. International Journal of Computer and Mathematics, 36:175–181.

    Article  Google Scholar 

  • Makinen, E., and Sieranta, M. (1994). Genetic algorithms for drawing bipartite graphs. Internatonal Journal of Computer Mathematics, 53:157–166.

    Article  Google Scholar 

  • Malitz, S., and Papakostas, A. (1992). On the angular resolution of planar graphs. In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing (STOC’92), pages 527–538.

    Google Scholar 

  • Malitz, S., and Papakostas, A. (1994). On the angular resolution of planar graphs. SIAM Journal on Discrete Mathematics, 7(2):172–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Manning, J. (1990). Geometric Symmetry in Graphs. PhD thesis, Purdue University.

    Google Scholar 

  • Marks, J., and Shieber, S. (1991). The computational complexity of cartographic label placement. Technical Report TR-05-91, Harvard University Computer Science.

    Google Scholar 

  • Masuda, S., Kimura, S., Kashiwabara, T., and Fujisawa, T. (1983). On the Manhattan wiring problem. Technical Report CAS 83-20, Institute of Electronics and Communication Engineers of Japan.

    Google Scholar 

  • Masui, T. (1992). Graphic object layout with interactive genetic algorithms. In Proceedings of the 1992 IEEE Workshop on Visual Languages (VL’92), pages 74–87.

    Google Scholar 

  • Matuszewski, C., Schonfeld, R., and Molitor, P. (1999). Using sifting for klayer straightline crossing minimization. Proceedings of the 7th Symposium on Graph Drawing (GD’99). Springer LNCS 1731, pages 217–224.

    Google Scholar 

  • McGrath, C., Blythe, J., and Krackhardt, D. (1996). Seeing groups in graph layouts. Connections, 19(2):22–29.

    Google Scholar 

  • McGrath, C., and Borgatti, S. P. (1999). The International Network for Social Network Analysis Homepage. http://www.heinz.cmu.edu/project/INSNA/.

  • Mehlhorn, K. (1984). Data Structures and Algorithms. Volume 2: Graph Algorithms and NP-Completeness. EATCS Monographs on Theoretical Computer Science. Springer.

    Google Scholar 

  • Mehlhorn, K., and Naher, S. (1999). The Leda Platform of Combinatorial and Geometric Computing. Cambridge University Press. Project home page at <http://www.mpi-sb.mpg.de/LEDA/>.

  • Messinger, E. B., Rowe, L. A., and Henry, R. H. (1991). A divide-andconquer algorithm for the automatic layout of large directed graphs. IEEE Transactions on Systems, Man, and Cybernetics, SMC-21(1):1–12.

    MathSciNet  Google Scholar 

  • Miriyala, K., Hornik, S. W., and Tamassia, R. (1993). An incremental approach to aesthetic graph layout. In Proceedings of the 6th International Workshop on Computer-Aided Software Engineering (CASE’93), pages 297–308.

    Google Scholar 

  • Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995). Layout adjustment and the mental map. Journal of Visual Languages and Computing, 6:183–210.

    Article  Google Scholar 

  • Moen, S. (1990). Drawing dynamic trees. IEEE Software, 7:21–28.

    Article  Google Scholar 

  • Monien, B., Ramme, F., and Salmen, H. (1995). A parallel simulated annealing algorithm for generating 3D layouts of undirected graphs. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 396–408.

    Google Scholar 

  • Monien, B., Ramme, F., and Salmen, H. (1996). A parallel simulated annealing algorithm for generating 3d layouts of undirected graphs. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 396–408.

    Google Scholar 

  • ]MTA (1999). MTA New York City subway map. http://www.mta.nyc.ny.us/nyct/images/sub1a.gif and <http://www.mta.nyc.ny.us/nyct/images/sub2a.gif>.

  • Mukherjea, S., Foley, J., and Hudson, S. (1994). Interactive clustering for navigating in hypermedia systems. In Proceedings of the ACM European Conference on Hypermedia Tehcnologie.

    Google Scholar 

  • Mutzel, P. (1994). The Maximum Planar Subgraph Problem. PhD thesis, Universitat zu Koln.

    Google Scholar 

  • Mutzel, P. (1995). A polyhedral approach to planar augmentation and related problems. In Proceedings of the 3rd European Symposium on Algorithms (ESA’95). Springer LNCS 979, pages 494–507.

    Google Scholar 

  • Mutzel, P. (1997). An alternative method to crossing minimization on hierarchical graphs. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 318–333.

    Google Scholar 

  • Nakano, S., Rahman, M. S., and Nishizeki, T. (1997). A linear-time algorithm for four-partitioning four-connected planar graphs. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 334-344.

    Google Scholar 

  • Nemhauser, G. L., and Sigismondi, G. (1992). A strong cutting plane/branchand-bound algorithm for node packing. Journal of the Operational Research Society, 43:443–457.

    Article  MATH  Google Scholar 

  • Nielsen, J. (1990). The art of navigating throuh hypertext. Communications of the ACM, 33(3):296–310.

    Article  Google Scholar 

  • Nishizeki, T., and Chiba, N. (1988). Planar Graphs: Theory and Algorithms. North-Holland Mathematics Studies 140/32.

    Google Scholar 

  • North, S. C. (1996). Incremental layout with DynaDag. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 409–418.

    Google Scholar 

  • Oerder, M., and Ney, H. (1993). Word graphs: An efficient interface between continuous-speech recognition and language understanding. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP’93), volume II, pages 119–122.

    Google Scholar 

  • Ostry, D. (1996). Some three-dimensional graph drawing algorithms. Master’s thesis, University of Newcastle.

    Google Scholar 

  • Otten, R. H. J. M., and vanWijk, J. G. (1978). Graph representation in interactive layout design. In Proceedings of the IEEE International Symposium on Circuits and Systems, pages 914–918.

    Google Scholar 

  • Papakostas, A. (1995). Upward planarity testing of outerplanar dags. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 298–306.

    Google Scholar 

  • Papakostas, A., Six, J. M., and Tollis, I. G. (1996). Experimental and theoretical results in interactive orthogonal graph drawing. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 371–386.

    Google Scholar 

  • Papakostas, A., and Tollis, I. G. (1997a). Incremental orthogonal graph drawing in three dimensions. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 52–63.

    Google Scholar 

  • Papakostas, A., and Tollis, I. G. (1997b). Incremental orthogonal graph drawing in three-dimensions. Technical Report UTDCS-02-97, Dept. of Computer Sciencs, University of Texas at Dallas.

    Google Scholar 

  • Papakostas, A., and Tollis, I. G. (1997c). Orthogonal drawing of high degree graphs with small area and few bends. In Proceedings of the 5th Workshop on Algorithms and Data Structures (WADS’97). Springer LNCS 1272, pages 354–367.

    Google Scholar 

  • Papakostas, A., and Tollis, I. G. (1997d). A pairing technique for area-efficient orthogonal drawings. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 354–370.

    Google Scholar 

  • Papakostas, A., and Tollis, I. G. (1998). Interactive orthogonal graph drawing. IEEE Transactions on Computers, 47(11):1297–1309.

    Article  MathSciNet  Google Scholar 

  • Patrignani, M. (1999a). On the complexity of orthogonal compaction. Technical Report RT-DIA-39-99, Dipartimento di Informatica e Automazione, Università degli Studi di Roma Tre.

    Google Scholar 

  • Patrignani, M. (1999b). On the complexity of orthogonal compaction. Proceedings of the 6th Workshop on Algorithms and Data Structures (WADS’99). Springer LNCS 1663, pages 56–61.

    Chapter  Google Scholar 

  • Patrignani, M., and Vargiu, F. (1997). 3DCube: A tool for the three dimensional graph drawing. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 284–290.

    Google Scholar 

  • Paulish, F. N. (1993). The Design of an Extendible Graph Editor. Springer LNCS 704.

    Google Scholar 

  • Platt, C. (1976). Planar lattices and planar graphs. Journal of Combinatorial Theory, Series B, 21:30–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Poon, C. K., Zhu, B., and Chin, F. (1998). A polynomial time solution for labeling a rectilinear map. Information Processing Letters, 65:201–207.

    Article  MathSciNet  Google Scholar 

  • Poutr’e, J. A. L. (1994). Alpha-algorithms for incremental planarity testing. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computation (STOC’94), pages 706–715.

    Google Scholar 

  • Purchase, H. C. (1997). Which aesthetic has the greatest effect on human understanding? In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 248–261.

    Google Scholar 

  • Purchase, H. C., Cohen, R. F., and James, M. (1996). Validating graph drawing aesthetics. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 435–446.

    Google Scholar 

  • Purchase, H. C., Cohen, R. F., and James, M. (1997). An experimental study of the basis for graph drawing algorithms. ACM Journal of Experimental Algorithmics, 2(4).

    Google Scholar 

  • Quinn, N. R., and Breuer, M. A. (1979). A force directed component placement procedure for printed circuit boards. IEEE Transactions on Circuits and Systems, 26(6):377–388.

    Article  MATH  Google Scholar 

  • Reeves, C. M. (1995). Modern Heuristic Techniques for Combinatorial Problems. McGraw-Hill.

    Google Scholar 

  • Reggiani, M. G., and Marchetti, F. E. (1988). A proposed method for representing hierarchies. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):2–8.

    Article  Google Scholar 

  • Reinelt, G. (1985). The linear ordering problem: algorithms and applications. Research and Exposition in Mathematics 8, Heldermann.

    Google Scholar 

  • Reingold, E. M., and Tilford, J. S. (1981). Tidier drawings of trees. IEEE Transactions on Software Engineering, 7(2):223–228.

    Article  Google Scholar 

  • Rival, I. (1985). The diagram. In Graphs and Order, NATO ASI Series, pages 103–133. Reidel Publishing.

    Google Scholar 

  • Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1993). Cone trees: Animated 3d visualizations of hierarchical information. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pages 189–193.

    Google Scholar 

  • Rosenstiehl, P., and Tarjan, R. E. (1986). Rectilinear planar layouts of planar graphs and bipolar orientations. Discrete & Computational Geometry, 1(4):342–351.

    MathSciNet  Google Scholar 

  • Roxborough, T., and Sen, A. (1997). Graph clustering using multiway ratio cut. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 291–296.

    Google Scholar 

  • Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’93), pages 42–47.

    Google Scholar 

  • Sablowski, R., and Frick, A. (1996). Automatic graph clustering. In Proceedings of the 4th International Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 395–400.

    Google Scholar 

  • Sander, G. (1994). Graph layout through the VCG tool. Technical Report A03/94, Universitat des Saarlandes.

    Google Scholar 

  • Sander, G. (1996a). A fast heuristic for hierarchical Manhattan layout. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 447–458.

    Google Scholar 

  • Sander, G. (1996b). Graph layout for applications in compiler construction. Technical Report A/01/96, FB 14 Informatik, Universitat des Saarlandes.

    Google Scholar 

  • Sarkar, M., and Brown, M. H. (1994). Graphical fisheye views. Communications of the ACM, 37(12):73–84.

    Article  Google Scholar 

  • Schlag, M., Liao, Y.-Z., and Wong, C. K. (1983). An algorithm for optimal two-dimensional compaction of VLSI layouts. Integration, the VLSI Journal, 1:179–209.

    Article  Google Scholar 

  • Schnyder, W. (1990). Embedding planar graphs on the grid. In Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA’90), pages 138–148.

    Google Scholar 

  • Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley-Interscience.

    Google Scholar 

  • Sedgewick, R. (1988). Algorithms, pages 438–441. Addison-Wesley, 2nd edition.

    Google Scholar 

  • Shiloach, Y. (1976). Arrangements of planar graphs on the planar lattice. PhD thesis, Weizmann Institute of Science.

    Google Scholar 

  • Sim, S. (1996). Automatic graph drawing algorithms. Manuscript, available at http://www.cs.toronto.edu/~simsuz/papers/grafdraw.ps.gz.

  • Six, J. M., Kakoulis, K. G., and Tollis, I. G. (1998). Refinement of orthogonal graph drawings. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 302–315.

    Google Scholar 

  • Strijk, T., and van Kreveld, M. (1999). Labeling a rectilinear map more efficiently. Information Processing Letters, 69(1):25–30.

    Article  MathSciNet  Google Scholar 

  • Strijk, T., and Wolf, A. (1999). Labeling points with circles. Technical Report TR-99-08, Institut fur Informatik, Freie Universitat Berlin.

    Google Scholar 

  • Stumme, G., and Wille, R. (1995). A geometrical heuristic for drawing concept lattices. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 452–460.

    Google Scholar 

  • Sugiyama, K. (1987). A cognitive approach for graph drawing. Cybernetic Systems, 18(6):447–488.

    Article  MathSciNet  Google Scholar 

  • Sugiyama, K., and Misue, K. (1991). Visualisation of structural information: Automatic drawing of compound digraphs. IEEE Transactions on Systems, Man, and Cybernetics, 21(4):876–892.

    Article  MathSciNet  Google Scholar 

  • Sugiyama, K., and Misue, K. (1995). A simple and unified method for drawing graphs: Magnetic-spring algorithm. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 364–375.

    Google Scholar 

  • Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–125.

    Article  MathSciNet  Google Scholar 

  • Supowit, K. J., and Reingold, E. M. (1983). The complexity of drawing trees nicely. Acta Informatica, 18:377–392.

    Article  MATH  MathSciNet  Google Scholar 

  • Tamassia, R. (1987). On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Tamassia, R. (1998). Constraints in graph drawing algorithms. Constraints, 3(1):87–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Tamassia, R., Di Battista, G., and Batini, C. (1988). Automatic graph drawing and readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61–79.

    Article  Google Scholar 

  • Tamassia, R., and Tollis, I. G. (1986). A unified approach to visibility representations of planar graphs. Discrete & Computational Geometry, 1(4):321–341.

    Article  MATH  MathSciNet  Google Scholar 

  • Tamassia, R., and Tollis, I. G. (1989). Planar grid embedding in linear time. IEEE Transactions on Circuits and Systems, 36(9):1230–1234.

    Article  MathSciNet  Google Scholar 

  • Tamassia, R., Tollis, I. G., and Vitter, J. S. (1991). Lower bounds for planar orthogonal drawings of graphs. Information Processing Letters, 39(1):35–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Tanenbaum, A. S. (1995). Distributed Operating Systems. Prentice Hall.

    Google Scholar 

  • Tarjan, R. E. (1983). Data structures and network algorithms CBMS-NSF Regional Conference Series in Applied Mathematics 44, SIAM.

    Google Scholar 

  • Thomassen, C. (1980). Planarity and duality of finite and infinite planar graphs. Journal of Combinatorial Theory, Series B, 29:244–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson, C. D. (1980). A Complexity Theory for VLSI. PhD thesis, Carnegie Mellon University.

    Google Scholar 

  • Tunkelang, D. (1994). A practical approach to drawing undirected graphs. Technical Report CMU-CS-94-161, School of Computer Science, Carnegie Mellon University.

    Google Scholar 

  • Tutte, W. T. (1960). Convex representations of graphs. Proceedings of the London Mathematical Society, Third Series, 10:304–320.

    Article  MATH  MathSciNet  Google Scholar 

  • Tutte, W. T. (1963). How to draw a graph. Proceedings of the London Mathematical Society, Third Series, 13:743–768.

    Article  MATH  MathSciNet  Google Scholar 

  • Ullman, J. (1989). Principles of Database and Knowledgebase Systems, volume 1. Computer Science Press.

    Google Scholar 

  • Utech, J., Branke, J., Schmeck, H., and Eades, P. (1998). An evolutionary algorithm for drawing directed graphs. In Proceedings of the International Conference on Imaging Science, Systems, and Technology, pages 154–160.

    Google Scholar 

  • Valdes, J., Tarjan, R. E., and Lawler, E. L. (1982). The recognition of series parallel digraphs. SIAM Journal on Computing, 11:298–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Valiant, L. (1981). Universality considerations in VLSI circuits. IEEE Transactions on Computers, C-30(2):135–140.

    MathSciNet  Google Scholar 

  • van Kreveld, M., Strijk, T., and Wolff, A. (1998). Point set labeling with sliding labels. In Proceedings of the 14th Annual ACM Symposium on Computational Geometry (SCG’98), pages 337–346.

    Google Scholar 

  • Verweij, B., and Aardal, K. (1999). An optimisation algorithm for maximum independent set with applications in map labelling. In Proceedings of the 7th European Symposium on Algorithms (ESA’99). Springer LNCS 1643, pages 426–437.

    Google Scholar 

  • Vogt, F. (1996). Formale Begriffsanalyse mit C++: Datenstrukturen und Algorithmen. Springer.

    Google Scholar 

  • Vogt, F., and Wille, R. (1995). TOSCANA-a graphical tool for analyzing and exploring data. In Proceedings of the DIMACS International Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 226–233.

    Google Scholar 

  • Vossen, G. (1991). Datenbankmodelle, Datenbanksprachen und Datenbankmanagement-Systeme. Addison-Wesley.

    Google Scholar 

  • Wagner, F. (1994). Approximate map labeling is in Ω(n log n). Information Processing Letters, 52(3):161–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Wagner, F., and Wolff, A. (1995a). An efficient and effective approximation algorithm for the map labeling problem. In Proceedings of the 3rd European Symposium on Algorithms (ESA’95). Springer LNCS 979, pages 420–433.

    Google Scholar 

  • Wagner, F., and Wolff, A. (1995b). Map labeling heuristics: Provably good and practically useful. In Proceedings of the 11th Annual ACM Symposium on Computational Geometry (SCG’95), pages 109–118.

    Google Scholar 

  • Wagner, F., and Wolff, A. (1997). A practical map labeling algorithm. Computational Geometry: Theory and Applications, 7:387–404.

    MATH  MathSciNet  Google Scholar 

  • Wagner, F., and Wolff, A. (1998). A combinatorial framework for map labeling. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 316–331.

    Google Scholar 

  • Wang, X., and Miyamoto, I. (1995). Generating cunstomized layouts. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 504–515.

    Google Scholar 

  • Wang, X., and Miyamoto, I. (1996). Generating customized layouts. In Proceedings of the 3rd International Symposium on Graph Drawing (GD’95). Springer LNCS 1027, pages 504–515.

    Google Scholar 

  • Warfield, J. (1977). Crossing theory and hierarchy mapping. IEEE Transactions on Systems, Man, and Cybernetics, SMC-7(7):502–523.

    MathSciNet  Google Scholar 

  • Warnke, V., Kompe, R., Niemann, H., and Noth, E. (1997). Integrated dialog act segmentation and classification using prosodic features and language models. Technical Report Verbmobil-Report 218, Lehrstuhl fur Mustererkennung 5, Universitat Erlangen-Nurnberg.

    Google Scholar 

  • Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.

    Google Scholar 

  • Watanabe, H. (1984). IC Layout Generation and Compaction Using Mathematical Optimization. PhD thesis, University of Rochester.

    Google Scholar 

  • Watanabe, T., Ae, T., and Nakamura, A. (1983). On the NP-hardness of edge-deletion and-contraction problems. Discrete Applied Mathematics, 6:63–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Webber, R. (1997). Finding the best viewpoints for three-dimensional graph drawings. In Proceedings of the 5th International Symposium on Graph Drawing (GD’97). Springer LNCS 1353, pages 87–98.

    Google Scholar 

  • Webber, R. (1998). Finding the Best Viewpoint for Three-Dimensional Graph Drawings. PhD thesis, University of Newcastle. http://www.cs.mu.oz. au/~rwebber/research/thesis/.

  • Wei, Y.-C., and Cheng, C.-K. (1991). Ratio cut partitioning for hierarchical designs. IEEE Transactions on Computer-Aided Design, 10(7):911–921.

    Article  Google Scholar 

  • West, D. (1996). Introduction to Graph Theory. Prentice Hall.

    Google Scholar 

  • White, D. (1999). Pgraph of Canaan genealogy made by Pajek program. Manuscript. http://eclectic.ss.uci.edu/~drwhite/pgraph/p-graphs.html.

  • Wiese, R., and Kaufmann, M. (1998). Adding constraints to an algorithm for orthogonal graph drawing. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 462–463.

    Google Scholar 

  • Wille, R. (1989). Lattices in data analysis: How to draw them with a computer. In Algorithms and Order, NATO ASI Series, pages 33–58. Kluwer Academic Publishers.

    Google Scholar 

  • Wille, R. (1997). Introduction to formal concept analysis. In Modelli e modellizzazione. Models and modelling. Consiglio Nazionale delle Ricerche, Instituto di Studi sulli Ricerca e Documentazione Scientifica, Roma, pages 39–51.

    Google Scholar 

  • Winter, A., and Schurr, A. (1997). Modules and updatable graph views for programmed graph rewriting systems. Technical Report AIB 97-3, Lehrstuhl fur Informatik III, RWTH Aachen.

    Google Scholar 

  • Wolff, A. (1999). Map Labeling in Theory and Practice. PhD thesis, Freie Universitat Berlin.

    Google Scholar 

  • Wolff, A., Knipping, L., van Kreveld, M., Strijk, T., and Agarwal, P. K. (1999). A simple and efficient algorithm for high-quality line labeling. In Proceedings of GISRUK’99.

    Google Scholar 

  • Wood, D. (1998a). An algorithm for three-dimensional orthogonal graph drawing. In Proceedings of the 6th International Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 332–346.

    Google Scholar 

  • Wood, D. (1998b). Two-bend three-dimensional orthogonal grid drawing of maximum degree five graphs. Technical Report 98/03, Monash University.

    Google Scholar 

  • Wood, D. R. (1999a). Multi-dimensional orthogonal graph drawing in the general position model. Technical Report 99/38, Monash University.

    Google Scholar 

  • Wood, D. R. (1999b). A new algorithm and open problems in three-dimensional orthogonal graph drawing. In Proceedings of the 10th Australasian Workshop on Combinatorical Algorithms (AWOCA’99), pages 157–167.

    Google Scholar 

  • Wood, D. R. (2000). Three-Dimensional Orthogonal Graph Drawing. PhD thesis, Monash University.

    Google Scholar 

  • Yannakakis, M. (1978). Node-an d edge-deletion NP-complete problems. In Proceedings 10th Annual ACM Symposium on the Theory of Computing (STOC’78), pages 253–264.

    Google Scholar 

  • Yoeli, P. (1972). The logic of automated map lettering. The Cartographic Journal, 9:99–108.

    Google Scholar 

  • Zeller, A., and Lutkehaus, D. (1996). DDD-A free graphical front-end for UNIX debuggers. ACM SIGPLAN Notices, 31(1):22–27.

    Article  Google Scholar 

  • Zoraster, S. (1986). Integer programming applied to the map label placement problem. Cartographica, 23(3):16–27.

    Google Scholar 

  • Zoraster, S. (1990). The solution of large 0-1 integer programming problems encountered in automated cartography. Operations Research, 38(5):752–759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willhalm, T. (2001). Software Packages. In: Kaufmann, M., Wagner, D. (eds) Drawing Graphs. Lecture Notes in Computer Science, vol 2025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44969-8_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44969-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42062-0

  • Online ISBN: 978-3-540-44969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics