Skip to main content

A Gradient Network for Vector Quantization and Its Image Compression Applications

  • Conference paper
  • First Online:
Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 (ICANN 2003, ICONIP 2003)

Abstract

The ultimate goal of vector quantization (VQ) is to encode the signal into representative code vectors such that it can be represented digitally in a compact way. This task can be formulated as an optimization problem, namely the minimization of the total distance between the signal and the code vectors. In this paper, we formulate VQ as a constrained binary integer programming problem by eliminating the code vectors, where the constraints that partition the signal space are linear. We propose a two dimensional Gradient Network to solve this problem. The performance of this solution method is tested on image compression applications and the results are compared with the ones obtained by the well-known k-means algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahalt S.C., Fowler J.E.: Vector Quantization using Artificial Neural Network Models. Proceedings of The Int. Workshop on Adaptive Methods and Emergent Techniques for Signal Processing and Communications. (1993) 42–61

    Google Scholar 

  2. Gray R.M., Neuhoff D.L.: Quantization. IEEE Transactions on Information Theory, Vol. 44, No. 6. (1998) 2325–2383

    Article  MATH  MathSciNet  Google Scholar 

  3. Smith K.A.: Neural Networks for Combinatorial Optimization A Review of More Than A Decade Research. Informs Journal on Computing, Vol.11, No. 1. (1999)

    Google Scholar 

  4. Kamgar-Parsi B., Gualtieri J.A, Devaney J. E., Kamgar-Parsi B.: Clustering with Neural Networks. Biological Cybernetics 6, (1990) 201–208

    Article  Google Scholar 

  5. Kamgar-Parsi B., Kamgar-Parsi B.: On Problem Solving with Hopfield Neural Networks. Biological Cybernetics 62, (1990) 415–523

    Article  MATH  MathSciNet  Google Scholar 

  6. Doğan H., Güzeliş C.: VQ As an Integer Optimization Problem and Gradient Artificial Neural Network Solution (In Turkish). Proceeding of SIU2002, (2002) 266–271

    Google Scholar 

  7. Joya G., Atencia M.A., Sandoval F.: Hopfield Neural Networks for Optimization Study of The Different Dynamics. Neurocomputing Vol. 43, (2002) 219–237

    Article  MATH  Google Scholar 

  8. Sammouda R., Noboru N., Nishitani H.: A Comparison of Hopfield Neural Network and Boltzmann Machine in Segmenting MR Images of the Brain. IEEE Transactions on Nuclear Science, Vol. 43, No. 6 (1996) 3361–3369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doğan, H., Güzeliş, C. (2003). A Gradient Network for Vector Quantization and Its Image Compression Applications. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics