Abstract
We propose a new active vision system that mimics human-like bottom-up visual attention using saliency map model based on independent component analysis. We consider the feature bases reflecting the biological features and psychological effect to construct the saliency map model, and the independent component analysis is used for integration of the feature bases to implement human-like visual attention system. Using the CCD camera, a DSP board, and DC motors with PID controllers, we implement an active vision system that can automatically select a visual attention area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Patt. Anal. Mach. Intell. Vol. 20. no. 11. (1998) 1254–1259
Navalpakkam, V., Itti, L.: A Goal Oriented Attention Guidance Model, BMCV 2002. LNCS 2525. (2002) 453–461
Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional Selection for Object Recognition — A Gentle Way, BMCV 2002. LNCS 2525. (2002) 472–479
Treisman, A.M., Gelde, G.: A feature-integration theory of attention, Cognitive Psychology, Vol. 12. no. 1. (1980) 97–136
Koike, T. Saiki, J.: Stochastic Guided Search Model for Search Asymmetries in Visual Search Tasks, BMCV 2002. LNCS 2525. (2002) 408–417
Sun, Y., Fisher, R.: Hierarchical Selectivity for Object-Based Visual Attention, BMCV 2002. LNCS 2525. (2002) 427–438
Ramström, O., Christensen, H.I.: Visual Attention Using Game Theory,” BMCV 2002. LNCS 2525. (2002) 462–471
Barlow, H.B., Tolhust, D. J.: Why do you have edge detectors? Optical society of America Technical Digest, Vol. 23. (1992) 172
Park, S.J., Shin, J.K., Lee, M.: Biologically Inspired Saliency Map Model for Bottom-up Visual Attention, BMCV 2002. LNCS 2525. (2002) 418–426
Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters, Vision Research, Vol. 37. (1997) 3327–3338
Buchsbaum, G., Gottschalk, A.: Trichromacy, opponent colours coding and optimum colour information transmission in the retina, Proc. R. Soc. London Ser. B. Vol. 220. (1983) 89–113
Wachtler, T., Lee, T.W., Sejnowski, T.J.: Thromatic structure of natural scenes, J. Opt. Soc. Am. A. Vol. 18. No. 1. (2001)
Derrington, A.M., Lennie, K.J.: Chromatic mechanisms in lateral geniculate nucleus of macaque, J. Physio. Lond. Vol. 357. (1984) 241–265
Itti, L., Koch, C.: Computational Modeling of Visual Attention, Nature Reviews Neuroscience, Vol. 2. No. 3. (2001) 194–203
Park, C.J., Oh, W.G., Cho, S.H., Choi, H.M.: An efficient context-free attention operator for BLU inspection of LCD, IASTED SIP. (2000) 251–256
Park, S.J., An, K.H., Lee, M.: Saliency map model with adaptive masking based on independent component analysis, Neurocomputing. Vol. 49. (2002) 417–422
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, SJ., Ban, SW., Shin, JK., Lee, M. (2003). Implementation of Visual Attention System Using Bottom-up Saliency Map Model. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_81
Download citation
DOI: https://doi.org/10.1007/3-540-44989-2_81
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40408-8
Online ISBN: 978-3-540-44989-8
eBook Packages: Springer Book Archive