Skip to main content

Residual Finite Tree Automata

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2710))

Included in the following conference series:

  • 420 Accesses

Abstract

Tree automata based algorithms are essential in many fields in computer science such as verification, specification, program analysis. They become also essential for databases with the development of standards such as XML. In this paper, we define new classes of non deterministic tree automata, namely residual finite tree automata (RFTA). In the bottom-up case, we obtain a new characterization of regular tree languages. In the top-down case, we obtain a subclass of regular tree languages which contains the class of languages recognized by deterministic top-down tree automata. RFTA also come with the property of existence of canonical non deterministic tree automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. [CDG+97]_H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.

    Google Scholar 

  2. [CGL+03]_J. Carme, R. Gilleron, A. Lemay, A. Terlutte, and M. Tommasi. Residual finite tree automata. Technical report, GRAPPA, 2003.

    Google Scholar 

  3. F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using rfsa. In ALT 2001, number 2225 in Lecture Notes in Artificial Intelligence. Springer Verlag, 2001.

    Google Scholar 

  4. F. Denis, A. Lemay, and A. Terlutte. Residual finite state automata. Fundamenta Informaticae, 51(4):339–368, 2002.

    MATH  MathSciNet  Google Scholar 

  5. F. Denis, A. Lemay, and A. Terlutte. some language classes identifiable in the limit from positive data. In ICGI 2002, number 2484 in Lecture Notes in Artificial Intelligence, pages 63–76. Springer Verlag, 2002.

    MathSciNet  Google Scholar 

  6. Henning Fernau. Learning tree languages from text. In Proc. 15th Annual Conference on Computational Learning Theory, COLT 2002, pages 153–168, 2002.

    Google Scholar 

  7. Sally A. Goldman and Stephen S. Kwek. On learning unions of pattern languages and tree patterns in the mistake bound model. Theorical Computer Science, 288(2):237–254, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. E.M. Gold. Language identification in the limit. Inform. Control, 10:447–474, 1967.

    Article  MATH  Google Scholar 

  9. F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

    Google Scholar 

  10. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 1–68. Springer Verlag, 1996.

    Google Scholar 

  11. Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper construction system for web information sources. In ICDE, pages 611–621, 2000.

    Google Scholar 

  12. M. Murata, D. Lee, and M. Mani. “Taxonomy of XML Schema Languages using Formal Language Theory”. In Extreme Markup Languages, Montreal, Canada, 2001.

    Google Scholar 

  13. F. Neven. Automata, xml and logic. In Proceedings of CSL, pages 2–26, 2002.

    Google Scholar 

  14. M. Nivat and A. Podelski. Minimal ascending and descending tree automata. SIAM Journal on Computing, 26(1):39–58, February 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. Yasubumi Sakakibara. learning context-free grammars from structural data in polynomial time. Theorical Computer Science, 76:223–242, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.W. Thatcher. Tree automata: an informal survey. In A.V. Aho, editor, Currents in the theory of computing, pages 143–178. Prentice Hall, 1973.

    Google Scholar 

  17. Wolfgang Thomas. Logical aspects in the study of tree languages. In Proceedings of the 9th International Colloquium on Trees in Algebra and Programming, CAAP’ 84, pages 31–50, 1984.

    Google Scholar 

  18. J. Viragh. Deterministic ascending tree automata. Acta Cybernetica, 5:33–42, 1981.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carme, J., Gilleron, R., Lemay, A., Terlutte, A., Tommasi, M. (2003). Residual Finite Tree Automata. In: Ésik, Z., Fülöp, Z. (eds) Developments in Language Theory. DLT 2003. Lecture Notes in Computer Science, vol 2710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45007-6_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45007-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40434-7

  • Online ISBN: 978-3-540-45007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics