Skip to main content

A hybrid projection based and radial basis function architecture

  • Conference paper
  • First Online:
Multiple Classifier Systems (MCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1857))

Included in the following conference series:

Abstract

A hybrid architecture that includes Radial Basis Functions (RBF) and projection based hidden units is introduced together with a simple gradient based training algorithm. Classification and regression results are demonstrated on various data sets and compared with several variants of RBF networks. In particular, best classification results are achieved on the vowel classification data [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. H. Deterding. Speaker Normalisation for Automatic Speech Recognition. PhD thesis, University of Cambridge, 1989.

    Google Scholar 

  2. D. L. Donoho and I. M. Johnstone. Projection-based approximation and a duality with kernel methods. Annals of Statistics, 17:58–106, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley, New York, 1973.

    MATH  Google Scholar 

  4. G. W. Flake. Square unit augmented, radially extended, multilayer percpetrons. In G. B. Orr and K. Müller, editors, Neural Networks: Tricks of the Trade, pages 145–163. Springer, 1998.

    Google Scholar 

  5. J. H. Friedman. Mutltivariate adaptive regression splines. The Annals of Statistics, 19:1–141, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1:297–318, 1986.

    Article  MathSciNet  Google Scholar 

  7. T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, London, 1990.

    MATH  Google Scholar 

  8. S. Lane, D. Handelman, J. Gelfand, and M. Flax. Function approximation using multi-layered neural networks and b-spline receptive fields. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 684–693, San Mateo, CA, 1991. Morgan Kaufmann.

    Google Scholar 

  9. Y. C. Lee, G. Doolen, H. H. Chen, G. Z.Sun, T. Maxwell, H.Y. Lee, and C. L. Giles. Machine learning using higher order correlation networks. Physica D, 22:276–306, 1986.

    MathSciNet  Google Scholar 

  10. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

    Article  Google Scholar 

  11. M. J. Orr. Introduction to Radial Basis Function networks. Technical report, 1996. http://www.anc.ed.ac.uk/~mjo/rbf.html.

  12. M. J. Orr. Recent advances in Radial Basis Function networks. Technical report http://www.anc.ed.ac.uk/~mjo/papers/recad.ps.gz 1999.

  13. M. J. Orr, J. Hallman, K. Takezawa, A. Murray, S. Ninomiya, M. Oide, and T. Leonard. Combining regression trees and radial basis functions. Division of informatics, Edinburgh University, 1999. Submitted to IJNS.

    Google Scholar 

  14. Gorman R. P. and Sejnowski T. J. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Network, pages 75–89, 1988. Vol. 1.

    Article  Google Scholar 

  15. A. J. Robinson. Dynamic Error Propogation Networks. PhD thesis, University of Cambridge, 1989.

    Google Scholar 

  16. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  17. M. Schetzen. The Volterra and Wiener Theories Of Nonlinear Systems. John Wiley and Sons, New York, 1980.

    MATH  Google Scholar 

  18. C. J. Stone. The dimensionality reduction principle for generalized additive models. The Annals of Statistics, 14:590–606, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. Volterra. Theory of Functional and of Integro-differential Equations. Dover, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, S., Intrator, N. (2000). A hybrid projection based and radial basis function architecture. In: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science, vol 1857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45014-9_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45014-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67704-8

  • Online ISBN: 978-3-540-45014-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics