Skip to main content

Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1853))

Included in the following conference series:

Abstract

The independence number of a graph and its chromatic number are hard to approximate. It is known that, unless coRP = NP, there is no polynomial time algorithm which approximates any of these quantities within a factor of n1-ε for graphs on n vertices.

We show that the situation is significantly better for the average case. For every edge probability p = p(n) in the range n −1/2+εp ≤ 3/4, we present an approximation algorithm for the independence number of graphs on n vertices, whose approximation ratio is O((np)1/2/ log n) and whose expected running time over the probability space G(n, p) is polynomial. An algorithm with similar features is described also for the chromatic number.

A key ingredient in the analysis of both algorithms is a new large deviation inequality for eigenvalues of random matrices, obtained through an application of Talagrand’s inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, Spectral techniques in graph algorithms, Lecture Notes Comp. Sci. 1380 (C.L. Lucchessi and A. V. Moura, Eds.), Springer, Berlin, 1998, 206–215.

    Google Scholar 

  2. N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, Proc. 26th ACM STOC, ACM Press (1994), 346–355.

    Google Scholar 

  3. N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random graph, Proc. 9th ACM-SIAM SODA, ACM Press (1998), 594–598.

    Google Scholar 

  4. B. Bollobás, Random graphs, Academic Press, New York, 1985.

    MATH  Google Scholar 

  5. B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1988), 49–55.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Boppana, Eigenvalues and graph bisection: An average case analysis, Proc. 28th IEEE FOCS, IEEE (1987), 280–285.

    Google Scholar 

  7. R. Boppana and M. M. Halldórsson, Approximating maximum independent sets by excluding subgraphs, Bit 32 (1992), 180–196.

    Google Scholar 

  8. M. Dyer and A. Frieze, The solution of some random NP-hard problems in polynomial expected time, J. Algorithms 10 (1989), 451–489.

    Article  MATH  MathSciNet  Google Scholar 

  9. U. Feige and J. Kilian, Zero knowledge and the chromatic number, Proc. 11th IEEE Conf. Comput. Complexity, IEEE (1996), 278–287.

    Google Scholar 

  10. U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semi-random graph, Random Str. Algor. 16 (2000), 195–208.

    Article  MATH  MathSciNet  Google Scholar 

  11. Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233–241.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Fürer, C. R. Subramanian and C. E. Veni Madhavan, Coloring random graphs in polynomial expected time, Algorithms and Comput. (Hong Kong 1993), Lecture Notes Comp. Sci. 762, Springer, Berlin, 1993, 31–37.

    Google Scholar 

  13. M. M. Halld orsson, A still better performance guarantee for approximate graph coloring, Inform. Process. Lett. 45 (1993), 19–23.

    Article  MathSciNet  Google Scholar 

  14. J. Hästad, Clique is hard to approximate within n1-ε, Proc. 37th IEEE FOCS, IEEE (1996), 627–636.

    Google Scholar 

  15. Approximation algorithms for NP-hard problems, D. Hochbaum, Ed., PWS Publish. Company, Boston, 1997.

    Google Scholar 

  16. R. Karp, Reducibility among combinatorial problems, in: Complexity of computer computations (E. Miller and J. W. Thatcher, eds.) Plenum Press, New York, 1972, 85–103.

    Google Scholar 

  17. L. Kučera, The greedy coloring is a bad probabilistic algorithm, J. Algorithms 12 (1991), 674–684.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Luczak, The chromatic number of random graphs, Combinatorica 11 (1991), 45–54.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. J. Prömel and A. Steger, Coloring clique-free graphs in polynomial expected time, Random Str. Algor. 3 (1992), 275–402.

    Google Scholar 

  21. M. Saks, Private communication.

    Google Scholar 

  22. M. Talagrand, A new isoperimetric inequality for product measure, and the tails of sums of independent random variables, Geom. Funct. Analysis 1 (1991), 211–223.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krivelevich, M., Van Vu, H. (2000). Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45022-X_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67715-4

  • Online ISBN: 978-3-540-45022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics