Skip to main content

A New Unfolding Approach to LTL Model Checking

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1853))

Included in the following conference series:

Abstract

A new unfolding approach to LTL model checking is presented, in which the model checking problem can be solved by direct inspection of a certain finite prefix. The techniques presented so far required to run an elaborate algorithm on the prefix.

Work partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich 342 “Werkzeuge und Methoden für die Nutzung paralleler Rechnerarchitekturen”, the Academy of Finland (Project 47754), and the Nokia Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bibliography on the net unfolding method. Available on the Internet at http://wwwbrauer.in.tum.de/gruppen/theorie/pom/pom.shtml.

  2. J. Esparza. Model checking using net unfoldings. Science of Computer Programming, 23:151–195, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of transition systems. In Proceedings of the 10th International Conference on Concurrency Theory (Concur’99), pages 2–20, 1999. LNCS 1055.

    Chapter  Google Scholar 

  4. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm. In Proceedings of 2nd International Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), pages 87–106, 1996. LNCS 1055.

    Google Scholar 

  5. Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL model checking. Research Report A60, Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland, April 2000. Available at http://www.tcs.hut.fi/pub/reports/A60.ps.gz.

    Google Scholar 

  6. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. In Proceedings of 15th Workshop Protocol Specification, Testing, and Verification, pages 3–18, 1995.

    Google Scholar 

  7. B. Graves. Computing reachability properties hidden in finite net unfoldings. In Proceedings of 17th Foundations of Software Technology and Theoretical Computer Science Conference, pages 327–341, 1997. LNCS 1346.

    Chapter  Google Scholar 

  8. K. Heljanko. Using logic programs with stable model semantics to solve deadlock and reachability problems for 1-safe Petri nets. In Proceedings of 5th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99), pages 240–254, 1999. LNCS 1579.

    Chapter  Google Scholar 

  9. R. Kaivola. Using compositional preorders in the verification of sliding window protocol. In Proceeding of 9th International Conference on Computer Aided Verification (CAV’97), pages 48–59, 1997. LNCS 1254.

    Google Scholar 

  10. R. Langerak and E. Brinksma. A complete finite prefix for process algebra. In Proceeding of 11th International Conference on Computer Aided Verification (CAV’99), pages 184–195, 1999. LNCS 1663.

    Google Scholar 

  11. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

    Google Scholar 

  12. S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedings of 9th International Conference on Computer-Aided Verification (CAV’ 97), pages 352–363, 1997. LNCS 1254.

    Google Scholar 

  13. P. Niebert. Personal communication, 1999.

    Google Scholar 

  14. C. Stirling and David Walker. Local model checking in the modal mu-calculus. Theoretical Computer Science, 89(1):161–177, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, pages 238–265, 1996. LNCS 1043.

    Google Scholar 

  16. F. Wallner. Model checking techniques using net unfoldings. PhD thesis, Technische Universität München, Germany, forthcoming.

    Google Scholar 

  17. F. Wallner. Model checking LTL using net unfoldings. In Proceeding of 10th International Conference on Computer Aided Verification (CAV’98), pages 207–218, 1998. LNCS 1427.

    Google Scholar 

  18. P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1,2):72–93, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esparza, J., Heljanko, K. (2000). A New Unfolding Approach to LTL Model Checking. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-45022-X_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67715-4

  • Online ISBN: 978-3-540-45022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics