
A Physically-Based Statistical Deformable
Model for Brain Image Analysis

Christophoros Nikou1,2, Fabrice Heitz1, Jean-Paul Armspach2, and Gloria
Bueno1,2

1 Laboratoire des Sciences de l’Image de l’Informatique et de la Télédétection
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Abstract. A probabilistic deformable model for the representation of
brain structures is described. The statistically learned deformable model
represents the relative location of head (skull and scalp) and brain surfa-
ces in Magnetic Resonance Images (MRIs) and accommodates their sig-
nificant variability across different individuals. The head and brain surfa-
ces of each volume are parameterized by the amplitudes of the vibration
modes of a deformable spherical mesh. For a given MRI in the training
set, a vector containing the largest vibration modes describing the head
and the brain is created. This random vector is statistically constrained
by retaining the most significant variation modes of its Karhunen-Loeve
expansion on the training population. By these means, the conjunction of
surfaces are deformed according to the anatomical variability observed in
the training set. Two applications of the probabilistic deformable model
are presented: the deformable model-based registration of 3D multimodal
(MR/SPECT) brain images without removing non-brain structures and
the segmentation of the brain in MRI using the probabilistic constraints
embedded in the deformable model. The multi-object deformable model
may be considered as a first step towards the development of a general
purpose probabilistic anatomical brain atlas.

1 Introduction

In medical image analysis, deformable models offer a unique and powerful ap-
proach to accommodate the significant variability of biological structures over
time and across different individuals. A survey on deformable models as a pro-
mising computer-assisted medical image analysis technique has recently been
presented in [7].

We present a 3D statistical deformable model carrying information on multi-
ple anatomical structures (head -skull and scalp- and brain) for multimodal brain
image processing. Our goal is to describe the spatial relation between these ana-
tomical structures as well as the shape variations observed over a representative
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population of individuals. In our approach, the different anatomical structu-
res are represented by physics-based deformable models [13] whose parameters
undergo statistical training. The resulting joint statistical deformable model is
considered as a first step towards the development of a general purpose proba-
bilistic atlas for various applications in medical image analysis (segmentation,
labeling, registration, pathology characterization).

In the proposed approach the considered anatomical structures surfaces are
extracted from a training set of 3D MRI. These surfaces are then parameterized
by the amplitudes of the vibration modes of a physically-based deformable model
[13,10] and a joint model is constructed for each set of structures. The joint
model is then statistically constrained by a Karhunen-Loeve decomposition of
the vibration modes. By these means, the spatial relation between the head and
brain structures, as well as the anatomical variability observed in the training
set are compactly described by a limited number of parameters.

Physics-based models enable a hierarchical description of anatomical struc-
tures as the ordered superimposition of vibrations (of different frequencies) of
an initial mesh. Physically-based parameterizations are also invariant to small
misregistration in rotation (contrary to Point Distribution Models (PDMs) [4],
needing accurate rotation and translation compensation). Let us notice that
physically-based models also differ from 3D Fourier descriptors because the latter
also need a uniform way to discretize the surface and are not rotation invariant
[14].

Two applications of the probabilistic deformable model are presented in this
paper:

– The segmentation of the brain from MRIs using the probabilistic constraints
embedded in the deformable model.

– The robust deformable model-based rigid registration of 3D multimodal
(MR/SPECT) brain images by optimizing an energy function relying on
the chamfer distance between the statistically constrained model parts and
the image data.

The remainder of this paper is organized as follows: in Section 2, the pa-
rameterization of the head and brain structures by the vibration modes of a
spherical mesh is presented. The statistical training procedure is described in
Section 3. The applications of the probabilistic model to 3D segmentation and
to multimodal (MRI/SPECT) image registration are presented in Section 4. Ex-
perimental results on real data, with a 50-patients trained model, are presented
and commented on in the same section. Finally, conclusions are proposed in
Section 5.

2 3D Physics-Based Deformable Modeling

To provide a training set, a representative collection of 50 3D MRI volumes
of different patients have first been registered to a reference image using an
unsupervised robust rigid registration technique [11,12]. This preliminary step is
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necessary to provide a consistent initialization for the deformable model for all
images in the training step, since the representation is not invariant to rotation
(the same alignment is also applied to the patient data processed in Section 4).
The head of each volume has then been segmented by simple thresholding and
region growing [9].

Both head and brain contours were parameterized by the amplitudes of the
vibration modes of a physics-based deformable model. Following the approach of
Nastar et al. [10], the model for a given structure consists of 3D points sampled
on a spherical surface, following a quadrilateral cylinder topology in order to
avoid singularities due to the poles. Each node has a mass m and is connected
to its four neighbours with springs of stiffness k. The model nodes are stacked
in vector:

X0 = (x0
1, y

0
1 , z0

1 , ..., x0
N ′N , y0

N ′N , z0
N ′N )T (1)

where N is the number of points in the direction of the geographical longitude
and N ′ is the number of points in the direction of the geographical latitude of the
sphere. The physical model is characterized by its mass matrix M, its stiffness
matrix K and its dumping matrix C and its governing equation may be written
as [13]:

MÜ + CU̇ + KU = F (2)

where U stands for the nodal displacements of the initial mesh X0. The image
force vector F is based on the euclidean distance between the mesh nodes and
their nearest contour points [3].

Since equation (2) is of order 3NN ′, where NN ′ is the total number of nodes
of the spherical mesh, it is solved in a subspace corresponding to the truncated
vibration modes of the deformable structure [10,13], using the following change
of basis:

U = ΦŨ =
∑

i

ũiφi, (3)

where Φ is a matrix and Ũ is a vector, φi is the ith column of Φ and ũi is the
ith scalar component of vector Ũ. By choosing Φ as the matrix whose columns
are the eigenvectors of the eigenproblem:

Kφi = ω2
i Mφi, (4)

and using the standard Rayleigh hypothesis [10], matrices K, M and C are
simultaneously diagonalized:

{
ΦT MΦ = I
ΦT KΦ = Ω2 (5)

where Ω2 is the diagonal matrix whose elements are the eigenvalues ω2
i and I is

the identity matrix.
An important advantage of this formulation is that the eigenvectors and

the eigenvalues of a quadrilateral mesh with cylinder topology have an explicit
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expression [1] and they do not have to be computed by standard slow eigen-
decomposition techniques (generally matrices K and M are very large). The
eigenvalues are given by the equation:

ω2
p,p′ =

4k

m

(
sin2 pπ

2N
+ sin2 p′π

N ′

)
(6)

and the eigenvectors are obtained by:

φp,p′ =
[
..., cos

(2n − 1)pπ

2N
cos

2n′p′π
N ′ , ...

]T

(7)

with n ∈ {1, 2, ..., N} and n′ ∈ {1, 2, ..., N ′}.
Substituting (3) into (2) and premultiplying by ΦT yields:

¨̃U + C̃ ˙̃U + Ω2Ũ = F̃ (8)

where C̃ = ΦT CΦ and F̃ = ΦT F.
In many computer vision applications [13], when the initial and the final state

are known, it is assumed that a constant load F is applied to the body. Thus,
equation (2) is called the equilibrium governing equation and corresponds to the
static problem:

KU = F (9)

In the new basis, equation (9) is thus simplified to 3NN ′ scalar equations:

ω2
i ũi = f̃i. (10)

In equation (10), ωi designates the ith eigenvalue, the scalar ũi is the amplitude
of the corresponding vibration mode (corresponding to eigenvector φi). Equa-
tion (10), indicates that instead of computing the displacements vector U from
equation (9), we can compute its decomposition in terms of the vibration modes
of the original mesh.

The number of vibration modes retained in the object description, is chosen
so as to obtain a compact but adequately accurate representation. A typical a
priori value covering many types of standard deformations is the quarter of the
number of degrees of freedom in the system [10] (i.e. 25% of the modes are kept).
Figure 1 shows the parameterization of head and brain surfaces considered for
a subject belonging to the training set, by the 25% lowest frequency modes.
Although not providing a high resolution description of the brain surface, this
truncated representation provides a satisfactory compromise between accuracy
and complexity of the representation. The spherical model is initialized around
the structures of interest (fig. 1(a) and 1(d)). The vibration amplitudes are
explicitly computed by equation (10), where rigid body modes (ωi = 0) are
discarded and the nodal displacements may be recovered using equation (3).
The physical representation X(Ũ) is finally given by applying the deformations
to the initial spherical mesh (fig. 1(b-c) and 1(e-f)):

X(Ũ) = X0 + ΦŨ (11)
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Thus, the head and brain surfaces of a particular patient are hierarchically
described in terms of vibrations of an initial spherical mesh. The next step
consists in applying the above parameterization to each patient of the training
set and to perform statistical learning for the head and brain structures.

a) b) c)

Fig. 1. Head and brain parameterization from 3D MRI. The first column shows in a
multiplanar (sagittal, coronal, transversal) view the initial spherical mesh superimposed
to the structures to be parameterized. The midlle column presents in a multiplanar view
the deformable models at equilibrium (25% of the modes). The last column illustrates
3D renderings of the physically-based models. The rows from top to bottom correspond
to: (a)-(c) head and (d)-(f) brain.

3 Statistical Training: The Joint Model

For each image i = 1, ..., n (n = 50) in the training set, a vector aicontaining
the lowest frequency vibration modes, MH and MB , describing the head and the
brain, respectively, is created:

ai = (ŨH
i , ŨB

i )T (12)
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where:

ŨH
i = (ũh

1 , ũh
2 , . . . , ũh

MH
)i (13)

ŨB
i = (ũb

1, ũ
b
2, . . . , ũ

b
MB

)i (14)

with 3(MH + MB) < 6NN ′.
Random vector a is statistically constrained by retaining the most significant

variation modes in its Karhunen-Loeve (kl) transform [4,5]:

a = ā + Pb (15)

where

ā =
1
n

n∑
i=1

ai (16)

is the average vector of vibration amplitudes of the structures belonging to the
training set, P is the matrix whose columns are the eigenvectors of the covariance
matrix

Γ = IE [(a − ā)T (a − ā)] (17)

and
bi = PT (ai − ā) (18)

are the coordinates of (a − ā) in the eigenvector basis.
The deformable model is finally parameterized by the m most significant sta-

tistical deformation modes stacked in vector b. By modifying b, both head and
brain are deformed in conjunction (fig. 2), according to the anatomical variabi-
lity observed in the training set. The multi-object deformable model describes
the spatial relationships between the considered surfaces of a subject as well as
their shape variations.

Given the double (head and brain) initial spherical mesh:

XINIT =
(

X0
X0

)
, (19)

the statistical deformable model X(a) is thus represented by:

X(a) = XINIT + Φa (20)

Combining equations (15) and (20) we have:

X(b) = XINIT + Φā + ΦPb (21)

where:

Φ =
(

ΦH 0
0 ΦB

)
, P =

(
PHB

PBH

)
, ā =

(
āH

āB

)
(22)

In equation (22), the columns of the 3NN ′ × 3MH matrix ΦH are the eigen-
vectors of the spherical mesh describing the head surface and the columns of the
3NN ′ × 3MB matrix ΦB are the eigenvectors of the spherical mesh describing
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the brain surface. Besides, the 3MH × m matrix PHB and the 3MB × m matrix
PBH describe the statistical dependencies of head and brain deformations ob-
served in the training set. Vectors āH and āB are of order 3MH ×1 and 3MB ×1
respectively, and vector b has a low dimension m � 3 (MH + MB).

a) b[1] = −3
√

λ1 b) b[1] = 0 c) b[1] = 3
√

λ1

d) b[2] = −3
√

λ2 e) b[2] = 0 f) b[2] = 3
√

λ2

Fig. 2. Multiplanar view of the 3D joint model’s deformations by varying the first two
statistical modes in vector b between −√

λi and
√

λi, i = 1, 2. λi designates the ith

eigenvalue of the covariance matrix Γ.

As it can be seen in Table 1, with the kl representation, only a few parameters
are necessary to describe the variations in the training population (fig. 2). Table 1
shows that, for instance 5 parameters carry approximately 95% of the global
information.

The number of degrees of freedom of the original mesh, for both head and
brain surfaces, was 2×3NN

′
= 2×3×100×100 = 60000. In the vibration modes

subspace, this number was reduced to 3(MH +MB) = 3×(2500+2500) = 15000
and finally in the KL subspace the degrees of freedom were reduced to m ' 5
achieving a compression ratio of 12000 : 1. This compression ratio enables a
compact description of shape variability, and results in a tractable constrained
deformable model for brain image segmentation and registration, as described
in the next section.
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Table 1. Percentage of the global information carried by the different eigenvalues as-
sociated with the statistical model. The total number of non-zero eigenvalues is 50.

KL decomposition of joint model variability

λk
λk∑50

i=1
λi

(%)
∑k

i=1
λi∑50

i=1
λi

(%)

λ1 51.12 51.12
λ2 20.54 71.66
λ3 12.91 84.57
λ4 7.38 91.95
λ5 3.16 95.11
...

...
...

λ50 0.00 100.0

4 Applications

Several applications of the statistical model may be considered in brain image
processing. The model may be used as a simplified anatomical representation
of the images belonging to the training set. If the training set is representative
enough of a population, the model may also be used to analyse images of patients
not belonging to the training set. To this end, the 50 subjects of our data base
were carefully selected, with the aid of an expert neurologist. Besides, the data
base is conceived in such a way that it can be incrementally augmented by new
elements.

We consider here two applications of the joint statistical model: the segmenta-
tion of the brain from 3D MRI and the registration of multimodal (MRI/SPECT)
brain images. Before presenting these two applications, let us notice that the
equation describing the configuration of the statistical model:

X(b) = XINIT + Φā + ΦPb (23)

may be separated into two equations describing the head and brain parts of the
model:

XH(b) = X0 + ΦH āH + ΦHPHBb (24)
XB(b) = X0 + ΦB āB + ΦBPBHb (25)

Let us also recall that equations (24) and (25) are coupled by the sub-matrices
PHB and PBH representing the statistical dependencies (spatial relationships)
between the two anatomical structures. These submatrices cannot be calculated
separately: they are parts of matrix P. The terms āH and āB express the mean
vibration amplitudes for the head and brain surfaces of the training set, X0 is
the initial spherical mesh and ΦH and ΦB denote its eigenvectors.
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4.1 Brain Segmentation

In order to segment the brain from a patient MRI volume, not belonging to
the training set, the patient head is first parameterized by the physics-based
model. The head structure is easily segmented from its background by simple
thresholding and region growing algorithms. The segmented head surface is pa-
rameterized by the amplitudes of the vibration modes of a spherical mesh, as
already explained in Section 2. The spherical mesh is initialized around the head
structure and equation (2) is solved in the modal subpsace. The solution for the
vibration amplitudes describing the patient head surface is:

ũh
i =

1
ω2

i

f̃h
i (26)

for i = 1, ..., 3MH . The head surface coordinates are obtained by introducing
vector ŨH = (ũh

1 , ũh
2 , . . . , ũh

MH
)T in equation (11):

XH(ŨH) = X0 + ΦHŨH (27)

The next step consists in determining the statistical model parameters b
describing “at best” the segmented head surface:

XH(b) = X0 + ΦH āH + ΦHPHBb = XH(ŨH) (28)

System (28) is overconstrained: there are 3NN
′
equations (the head surface

coordinates XH) and m unknowns (the components of b). Moreover, matrix
PHB , describing the head and brain surfaces spatial relation, constrains vector b
to describe both head and brain surfaces. Further regularization may be obtained
by adding a strain-energy minimization constrain [15]:

Es =
1
2
bT Λ2b (29)

where Λ = diag{λi} contains the eigenvalues of the covariance matrix Γ. Strain
energy enforces a penalty proportional to the squared eigenvalue associated with
each component of b.

The solution of (28) is formulated in terms of minimization of a regularized
least squares error:

E(b) = [XH(ŨH) − X0 − ΦH āH − ΦHPHBb]T [XH(ŨH) − X0 (30)
− ΦH āH − ΦHPHBb] + αbT Λ2b

Differentiating with respect to b, we obtain the strain-minimizing overcon-
strained least squares solution:

b∗ = [(ΦHPHB)T ΦHPHB +αΛ2]−1(ΦHPHB)T [XH(ŨH)−X0−ΦH āH ]. (31)

A first estimate of the patient’s brain surface is then recovered by introducing
the estimated parameter b∗ in equation (25), describing the brain part of the
statistical model:

XB(b∗) = X0 + ΦB āB + ΦBPBHb∗ (32)
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Equation (32) provides a good initial prediction of the location of the brain sur-
face, obtained by exploiting the spatial relationships between head and brain,
coded in the learned statistical representation. This feature of the proposed ap-
proach significantly alleviates the problem of manual initialization which is a
requirement in most of the deformable model-based segmentation methods.

Further improvement of this initial solution may be obtained by alternately
optimizing an energy function parameterized by the m components of vector b
[5], in order to fit the part of the model describing the brain, XB , to a noisy
contour map Ic extracted from the MRI image [8]. In our case, the cost function
E to be optimized is defined as:

E(b) =
3NN

′∑
p∈XB(b)|p=1

∇G ∗ Ic(p) (33)

where the operator ∇G denotes the gradient of a Gaussian kernel. The above
cost function simply counts the number of points of the model located on a
contour point of the smoothed brain image. Optimization of energy function
(33) is obtained by a non linear Gauss-Seidel like algorithm, known as ICM [2].
It has fast convergence properties and only accepts configurations decreasing the
cost function.

To summarize, the overall segmentation algorithm is based on the following
steps:

1. Parameterization of the head surface using equations (26) and (27).
2. Estimation of the statistical deformation parameters b∗ by solving the re-

gularized overconstrained system (31).
3. Prediction of the brain surface by equation (32).
4. Fine-tuning of the solution by deterministic optimization of cost function

(33).

Figure 3 presents a typical example of brain segmentation from a 3D MRI,
corresponding to a patient not belonging to the training set. The image in figure
3(a) is a post-operative MRI (thus exhibiting missing data). In figure 3(b) the
head surface is segmented and parameterized by the physics-based deformable
model (eq. (26) and (27)). In fig. 3(b), the head surface coordinates combined
with the probabilistic model provide a good prediction for the brain surface.
The statistical model is not affected by missing data because its deformations
are constrained by the statistical analysis of the shape variations observed in the
training population. The whole segmentation process takes about 5 min cpu time
on a standard (HP 9000/C200) workstation for a 1283 image volume. Most of
the computation time concerns head surface parameterization and especially the
image forces based on the euclidean distance transform of the 3D MR image [3].

4.2 Multimodal Image Registration

The second application considered in this paper concerns the rigid registration
of multimodal (MR/SPECT) 3D images. Registration of a multimodal image
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a) b) c)

Fig. 3. (a) A patient MR image with the initial spherical mesh superimposed. (b)
Prediction of the brain surface using the head surface and the probabilistic deformable
model. (c) 3D rendering of the segmented brain.

pair consists in estimating the rigid transformation parameters (3D rotation and
translation parameters) that have to be applied to the image to be registered
(here the SPECT image) in order to match the reference image (here the MRI).

The registration relies on the head structure in the MRI and the brain struc-
ture in the SPECT image, which are easy to extract from these two modalities
(contrary to the brain structure in MRI). These structures do not overlap but
the deformable model represents the relative location of the head and brain con-
tours and accounts for the anatomical variability observed among the training
population. The deformable model (restricted here to head and brain surfaces)
is used as a probabilistic atlas that constrains the rigid registration of the image
pair.

The multimodal rigid registration method relies on the following steps:

1. Segmentation of the head structure in MRI and the brain structure in
SPECT from their backgrounds.

2. Brain surface recovery from the MRI using the segmentation algorithm pre-
sented in section 4.1

3. Registration of the estimated brain surface with the SPECT brain surface
by optimization of a cost function.

The first step is standard preprocessing for background noise elimination.
The second step estimates the brain surface from the MRI using the head sur-
face parameterization and the statistical deformable model. By these means,
multimodal image registration is also a measure for the accuracy of the segmen-
tation process. Finally, the third step brings into alignment the estimated MRI
brain surface and the SPECT image surface by optimization of an objective fun-
ction having as variables the rigid transformation parameters between the two
surfaces. Various cost functions may be used in that step for the registration of
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binary surfaces. We have applied the following energy function:

E(Θ) =
∑

p∈ISP ECT

ID(TΘ(p)) (34)

where TΘ is the rigid transformation with parameters Θ = {tx, ty, tz, θx, θy, θz},
p is a voxel of the SPECT image surface ISPECT and ID is the chamfer distance
transformation [3] of the part of the statistical model describing the brain. For
all of the SPECT surface voxels, equation (34) counts the distance between
a SPECT image surface point and its nearest point on the deformable model
surface. We have chosen chamfer distance matching because it is fast and it is
easily generalized to any surfaces. The whole registration procedure takes about
10 min cpu time on a HP C200 workstation for a 1283 image volume.

Figure 4 shows an example of a MRI/SPECT registration using the proposed
technique. The images in figure 4(a) show the two volumes before registration.
The SPECT contours are superimposed onto the MRI to qualitatively evaluate
the registration. Figure 4(b) presents the head and brain surface recovery of the
MRI using the segmentation algorithm described in the previous section. The
matching of the SPECT volume to the part of the model describing the brain
is illustrated in fig.4(c). The images in figure 4(d) show the two volumes after
registration. As can be seen, although the MRI and SPECT head and brain
contours do not overlap, the two images have been correctly registered using the
statistical model.

To quantitatively assess the ability of the physics-based statistical deformable
model to handle multimodal image pairs, a 3D SPECT image volume has been
manually registered to its corresponding MRI volume with the aid of an expert
physician. The manually registered SPECT volume was then transformed using
translations between −20 and +20 voxels and rotations between −30 and +30
degrees. By these means 25 new images were created. These images were then
registered using three different techniques and statistics on the registration errors
were computed on the set of 25 different registrations. We have compared our
Statistical Deformable Model-based technique (SDM) to the maximization of the
Mutual Information (MI) [6] (currently considered as a reference method) and
the Robust Inter-image Uniformity criterion (RIU) developed by the authors [11,
12]. Both of the latter techniques have been validated in previous studies and
are robust to missing data, outliers and large rotations. For each method, the
estimated registration parameters, that is the 3D translations (tx, ty, tz) and
rotations (θx, θy, θz) were compared to the true ones to determine the accuracy
of the registration. Tables 2 and 3 show the mean, the standard deviation, the
median and maximum of the registration errors for the different techniques. As
can be seen the proposed SDM approach leads to a registration accuracy which
is close to the two other methods.

5 Conclusion and Future Prospects

We have presented a physically-based 3D statistical deformable model embed-
ding information on the spatial relationships and anatomical variability of mul-
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a

b c

d

Fig. 4. MRI/SPECT registration using the deformable model. (a) MRI and SPECT
volumes before registration. The SPECT contours are superimposed onto the MRI to
illustrate the misalignment. (b) Parameterization of the head structure and estima-
tion of the brain surface of the MR image in (a) using the statistically constrained
deformable model. (c) Registration of the SPECT image to the part of the statistical
model describing the brain surface. (d) MRI and SPECT volumes after registration.
The registered SPECT image contours are superimposed onto the MRI to illustrate the
alignment of the two images.
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Table 2. Multimodal registration of 3D MRI/SPECT images. A 3D SPECT image
volume manually pre-registered by an expert to its MRI counterpart was artificially
transformed using 25 different translation and rotation parameters. The average and
the standard deviation of the registration errors are presented for the different methods.
Translation errors are given in voxels and rotation errors in degrees.

3D MRI/SPECT Registration Errors (µ ± σ)
MI RIU SDM

∆tx 1.33 ± 1.16 0.47 ± 0, 41 0.89 ± 0.43
∆ty 1.61 ± 1.06 1.13 ± 0, 90 0.86 ± 0.88
∆tz 1.06 ± 1.19 1.08 ± 0, 74 1.05 ± 1.02
∆θx 1.26 ± 1.09 0.75 ± 0, 56 1.15 ± 1.11
∆θy 1.60 ± 0.92 0.58 ± 0, 44 1.28 ± 0.87
∆θz 0.99 ± 0.86 1.04 ± 0, 78 1.29 ± 0.67

Table 3. Multimodal registration of 3D MRI/SPECT images. A 3D SPECT image
volume manually pre-registered by an expert to its MRI counterpart was artificially
transformed using 25 different translation and rotation parameters. The median and
maximum registration errors for the rigid transformation parameters are presented.
See text for technique abbreviations.

3D MRI/SPECT Registration Errors
MI RIU SDM

median(∆t) 1.35 0.63 0.54
maximum(∆t) 4.24 3.05 2.63
median(∆θ) 1.14 0.52 1.09
maximum(∆θ) 4.35 2.47 3.52

tiple anatomical structures, as observed over a representative population. The
particular model developed in this paper was devoted to head and brain repre-
sentation. Applications of this model included the registration of multimodal
image pairs (MRI/SPECT) and the unsupervised segmentation of the brain
structure from a given modality (MRI). The major advantage of statistical mo-
dels is that they naturally introduce a priori statistical knowledge that provides
useful constraints for ill-posed image processing tasks, such as image segmenta-
tion. Consequently they are less affected by noise, missing data or outliers. As
an example, the statistical deformable model was applied to the segmentation
of the brain structure from post operative images, in which missing anatomi-
cal structures lead standard voxel-based techniques to erroneous segmentations.
The registration of multimodal brain images was also handled without perfor-
ming any preprocessing to remove non-brain structures.

One perspective of our work is to extend the model by representing other
anatomical structures of the brain (ventricles, corpus callosum, hippocampus,
etc.). The statistical deformable model presented in this paper may be conside-
red as a first step towards the development of a general purpose probabilistic
anatomical atlas of the brain.
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