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Abstract. We propose a general unsupervised multiscale approach to-
wards image segmentation. The novelty of our method is based on the
following points: firstly, it is general in the sense of being independent
of the feature extraction process; secondly, it is unsupervised in that
the number of classes is not assumed to be known a priori; thirdly, it
is flexible as the decomposition sensitivity can be robustly adjusted to
produce segmentations into varying number of classes and fourthly, it is
robust through the use of the mean shift clustering and Bayesian multis-
cale processing. Clusters in the joint spatio-feature domain are assumed
to be properties of underlying classes, the recovery of which is achie-
ved by the use of the mean shift procedure, a robust non-parametric
decomposition method. The subsequent classification procedure consists
of Bayesian multiscale processing which models the inherent uncertainty
in the joint specification of class and position via a Multiscale Random
Field model which forms a Markov Chain in scale. At every scale, the
segmentation map and model parameters are determined by sampling
from their conditional posterior distributions using Markov Chain Monte
Carlo simulations with stochastic relaxation. The method is then applied
to perform both colour and texture segmentation. Experimental results
show the proposed method performs well even for complicated images.

1 Introduction

The segmentation of an image into an unknown number of distinct and in some
way homogeneous regions is a difficult problem and remains a fundamental issue
in low-level image analysis. Many different methodologies has been proposed but
a process that is highly unsupervised, flexible and robust has yet to be realised.

In this paper, we propose a general unsupervised multiscale approach towards
image segmentation. The strength of our method is based on the following points:
(i) it is general in the sense of being independent of the feature extraction pro-
cess; consequently, the algorithm can be applied to perform different types of
segmentation without modification, be it grey-scale, texture, colour based etc.
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(ii) it is unsupervised in that the number of classes is not assumed to be known
a priori (iii) it is flexible as the decomposition sensitivity can be robustly adju-
sted to produce segmentations into varying number of classes (iv) it is robust
through the use of the mean shift clustering and Bayesian multiscale proces-
sing (v) dramatic speed-ups of computation can be achieved using appropriate
processor architecture as most parts of the algorithm are highly parallellised.

The complete algorithm consists of a two-step strategy. Firstly, salient fea-
tures which correspond to clusters in the feature domain, are regarded as mani-
festations of classes, the recovery of which is to be achieved using the mean shift
procedure [B], a kernel-based decomposition method, which can be shown to be
the generalised version of the k-means clustering algorithm [3].

Secondly, upon determining the number of classes and the properties of each
class, we proceed towards the problem of classification. Unfortunately, classifica-
tion in the image segmentation context is afflicted by uncertainties which render
most simple techniques ineffective. To be more certain of the class of a pixel
requires averaging over a larger area, which unfortunately makes the location
of the boundary less certain. In other words, localisation in class space conflicts
directly with the simulteneous localisation in position space. This has been rigo-
rously shown by Wilson and Spann [I5] to be a consequence of the relationship
between the signals of which images are composed and the symbolic descripti-
ons, in terms of classes and properties, which are the output of the segmentation
process. These effects of uncertainties can however be minimised by the use of
representations employing multiple scales.

Motivated by this rationale, we adopted a Bayesian multiscale classification
paradigm by modelling the inherent uncertainty in the joint specification of class
and position via the Multiscale Random Field model [1]. This approach provides
context for the classification at coarser scales before achieving accurate boundary
tracking at finer resolutions.

2 The Mean Shift Procedure

The mapping of real images to feature spaces often produces a very complex
structure. Salient features whose recovery is necessary for the solution of the seg-
mentation task, correspond to clusters in this space. As no a priori information is
typically available, the number of clusters/classes and their shapes/distributions
have to be discerned from the given image data.

The uniqueness of image analysis in this clustering context lies in the fact
that features of neighbouring data points in the spatial domain are strongly
correlated. This is due to the fact that typical images do not consist of ran-
dom points but are manisfestations of entities which form contiguous regions
in space. Following this rationale, we represent the image to be segmented in a
n-dimensional feature space. Position and feature vectors are then concatenated
to obtain a joint spatio-feature domain of dimension d = n + 2. Our approach
thus includes the crucial spatial locality information typically missing from most
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clustering approaches to image segmentation. All features are then normalised
by dividing with its standard deviation to eliminate bias due to scaling.

This joint spatio-feature domain can be regarded as samples drawn from an
unknown probability distribution function. If the distribution is represented with
a parametric model (e.g. Gaussian mixture), severe artifacts may be introduced
as the shape of delineated clusters is constrained. Non-parametric cluster analysis
however, uses the modes of the underlying probability density to define cluster
centres and the valleys in the density to define boundaries separating the clusters.

Kernel estimation is a good practical choice for non-parametric clustering
techniques as it is simple and for kernels obeying mild conditions, the estima-
tion is asymptotically unbiased, consistent in a mean-square sense and uniformly
consistent in probability [5]. Furthermore, for unsupervised segmentation, where
flexibility and interpretation are of utmost importance, any rigid inference of
‘optimal’ number of clusters may not be productive. By using a kernel-based
density estimation approach and controlling the kernel size, a method is develo-
ped which is capable of decomposing an image into the number of classes which
corresponds well to a useful partitioning for the application at hand. Alterna-
tively, we can produce a set of segmentations for the image (corresponding to
different number of classes) with each one reflecting the decomposition of the
image under different feature resolution.

2.1 Density Gradient and the Mean Shift Vector

Let {X;}i=1..n be the set of N image vectors in the d-dimensional Euclidean
space R?. The multivariate kernel density estimate obtained with kernel K (x)
and window radius h, computed at point x is defined as:

) = Nlhdif( (%) 0

The use of a differential kernel allows us to define the estimate of the density
gradient estimate as the gradient of the kernel density estimate ({):

N
VI(x) = Vi) = 57 > VK (X_hxl> (2)
=1

The Epanechnikov kernel [13], given by:
e (d+2)(1—xTx)ifxTx < 1
KE (X =

0 otherwise

(3)

has been shown to be the simplest kernel to possess properties of asympto-
tic unbiasedness, mean-square and uniform consistency for the density gradient
estimate [5]. In this case, the density gradient estimate becomes:

A Ny d+2| 1
Vie(x) = NN Fxx e;( )(Xz - X) (4)
i hi{X
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where the region S}, (x) is a hypersphere (uniform kernel) of radius h centred on
x, having the volume h%cq and containing N, data points. The last term in (@):

My(x)=— > (Xi—x) (5)
* X, €5 (x)

is called the sample mean shift. The quantity % is the kernel density esti-

mate computed with the uniform kernel Sy, (x), fu(x) and thus we can write (H)
as:

Vi) = fu) M (x) ()
which yields:
M) = 7 2fo(S> (7)

Equation ([7) depicts the mean shift vector as a normalised density gradient
estimate. This implies that the vector always points towards the direction of the
maximum increase in density and hence it can define a path leading to a local
density maximum. The normalised gradient in ([7)) also brings about a desirable
adaptive behaviour, with the mean shift step being large for low density regions
and decreases as x approaches a mode.

5000

Density Estimate

L L L
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1-D variable -8 2 - 0 1 2 3 4 5 6

Fig. 1. On the left: Consider the density estimation plot (in blue) of a hypothetical
1-D feature. The gradient or derivative of the density plot is shown in red. It is obvious
that the density gradient always points in the direction of maximum increase in density
(bear in mind that left-to-right along the 1-D axis constitutes positive movement). On
the right: As the mean shift vector is proportional to the density gradient estimate,
successive computations of the mean shift define a path leading to a local density
maximum (shown here for a 2-D feature)

While it is true that the mean shift vector My (x) has the direction of the
gradient estimate at x, it is not apparent that the density estimate at the suc-
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cessive locations of the mean shift procedure is a monotonic increasing sequence.
The following theorem, however, assures the convergence:

Theorem. Let fr = {fk (Y, KE)}k be the sequence of density
=1,2,...

estimates obtained using the Epanechnikov kernel and computed at the
points (Yj),_; o defined by the sucessive locations of the mean shift
procedure with a uniform kernel. The sequence is convergent.

Proof of this theorem can be found in [4].

2.2 Mean Shift Clustering Algorithm

The mean shift clustering algorithm consists of successive computation of the
mean shift vector, My(x) and translation of the window Sy(x) by My (x). Each
data point thus becomes associated with a point of convergence which represents
a local mode of the density in the d-dimensional space. Iterations of the procedure
thus gives rise to a ‘natural’ clustering of the image data, based solely on their
mean shift trajectories.

The procedure in its original form, is meant to be applied to each point in
the data set. This approach is not desirable for practical applications especially
when the data set is large as is typical for images. The conventional mean shift
procedure has a complexity of O(N?) for a set of N data points. A more realistic
approach consist of a probabilistic mean shift algorithm as proposed in [4] whose
complexity is of O(mN), with m < N, as outlined below:

1. Define a random tessellation of the space with m < N hyperspheres Sp(x).
To reduce computational load, a set of m points called the sample set, is
randomly selected from the data. It is proposed that two simple constraints
are imposed on the sample set: firstly, the distance between any two points in
the sample set should not be smaller than h, the radius of the hypersphere,
Sh(x). Secondly, sample points should not lie in sparsely populated regions.
A region is defined as sparsely populated whenever the number of points
inside the hypersphere is below a certain threshold 7. The distance and
density constraints automatically determine the size m of the sample set.
Hyperspheres centred on the sample set cover most of the data points. These
constraints can of course be relaxed if processing time is not a critical issue.

2. The mean shift procedure is applied to the sample set. A set containing m
cluster centre candidates is defined by the points of convergence of the m
mean shift procedures. As the computation of the mean shift vectors is based
on almost the entire data set, the quality of the gradient estimate is not
diminished by the use of sampling.

3. Perturd the cluster candidates and reapply the mean shift procedure. Since a
local plateau can prematurely stop the iterations, each cluster centre can-
didate is perturbed by a random vector of small norm and the mean shift
procedure is left to converge again.
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4. Derive the cluster centres Y1,Y2,..., Y, from the cluster centre candidates.
Any subset of cluster centre candidates which are less than distance h from
each other defines a cluster centre. The cluster centre is the mean of the
cluster centre candidates in the subset.

5. Validate the cluster centres. Between any two cluster centres Y; and Y, a
significant valley should occur in the underlying density. The existence of the
valley is tested for each pair (Y;,Y;). The hypersphere Sy, (x) is moved with
step h along the line defined by (Y;,Y;) and the density is estimated using
the Epanechnikov kernel, Ky along the line. Whenever the ratio between

min [ FYo), f (Yj)] and the minimum density along the line is larger than a

certain threshold, 75, a valley is assumed between Y; and Y ;. If no valleys
are found, the cluster centre of lower density, (Y; or Y;) is removed from
the set of cluster centres.

The clustering algorithm makes use of three parameters: the kernel radius,
h, which controls the sensitivity of the decomposition, the threshold T3, which
imposes the density constraint on the sample set and 75, corresponding to the
minimum acceptable peak-valley ratio. The parameters T7 and T» generally have
a weak influence on the final results. In fact, all our experimental results as per-
formed on 256x256 resolution images were obtained by fixing 73 = 50 and
To, = 1.2. As the final objective of a segmentation is often application specific,
top-down a priori information controls the kernel radius h, resulting in data
points having trajectories that merge into appropriate number of classes. Al-
ternatively, the ‘optimal’ radius can be obtained as the centre of the largest
operating range which yields the same number of classes. Finally, cluster centres
which are sufficient close (distance being less then h apart) in the n-dimensional
‘feature-only’ space (remember, n = d — 2) are merged in order to group similar
features which are spatially distributed.

Fig. 2. Flexibility of mean shift clustering in determining the number of classes. From
left: Image of ‘house’ and its corresponding segmentations using h = 0.2 (47 classes),
h = 0.4 (15 classes) and h = 0.8 (8 classes) in the 5-dimensional normalised Euclidean
space. The classification strategy is implemented using techniques detailed in Sect. 3
and 4

We shall assume these validated cluster centres to be manisfestations of un-
derlying class properties for our image segmentation task, with each class thus
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represented by an n-dimensional feature vector. We then proceed with a mul-
tiscale Bayesian classification algorithm outlined below. A Bayesian approach
is used because the notion of likelihood can be determined naturally from the
computation of dissimilarity measures between feature vectors. Moreover, priors
can be effectively used to represent information regarding segmentation results
of coarser scales when segmentation is being performed for finer resolutions.

3 The Multiscale Random Field Model

A multiscale Bayesian classification approach is implemented using the Multis-
cale Random Field (MSRF) model [I]. In this model, let the random field Y
be the image that must be segmented into regions of distinct statistical beha-
viour. The behaviour of each observed pixel is dependent on a corresponding
unobserved class in X. The dependence of observed pixels on their class is spe-
cified through the probability p(Y = y|X = z), or the likelihood function. Prior
knowledge about the size and shapes of regions will be modelled by the prior
distribution p(X).

X is modelled by a pyramid structure multiscale random field. X(©) is assu-
med to be the finest scale random field with each site corresponding to a single
image pixel. Each site at the next coarser scale, X(1), corresponds to a group of
four sites in X(©). And the same goes for coarser scales upwards. Thus, the mul-
tiscale classification is denoted by the set of random fields, X", n =0,1,2, ....

The main assumption made is that the random fields form a Markov Chain
from coarse to fine scale, that is:

p <X<n> — 2™ xO =20 ] > n) —p (X(m = (™| x (D) = x(nm) (8)

In other words, it is assumed that for X (™, X(+1 contain all relevant in-
formation from previous coarser scales. We shall further assume that the classi-
fication of sites at a particular scale is dependent only on the classfication of a
local neighbourhood at the next coarser scale. This relationship and the chosen
neighbourhood structure are depicted in Fig. [

3.1 Sequential Maximum a Posteriori (SMAP) Estimation

In order to segment the image Y, one must accurately estimate the site classes
in X. Generally, Bayesian estimators attempt to minimise the average cost of an
errorneous segmentation. This is done by solving the optimisation problem:

i = arg mwinE CX,z)|Y =y) 9)

where C(X, x) is the cost of estimating the ‘true’ segmentation X by the appro-
ximate segmentation x. The choice of functional C' is of crucial importance as
it determines the relative importance of errors. Ideally, a desirable cost function
should assign progressively greater cost to segmentations with larger regions of
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Fig. 3. Blocks 1,2,3 and 4 are of scale n and have a common parent at scale n + 1,
i.e. o, which they are dependent on. The arrows show additional dependence on their
parent’s neighbours: d1, d2 and 3

misclassified pixels. To achieve this goal, the following cost function has been
proposed [1]:

L
1 n—1
Csmap = 5 + ;2 Cn(X, ) (10)
where:
L . .
Cu(X,2)=1-]] ¢ (X@) - z“)) (11)

The behaviour of Csyap is solely a function of the coarsest scale that contains
a misclassified site. The solution is given by:

) (X0 =070 500y ) £ (40} 1

1(”)

where ¢ is a second order term which may be bounded by:

0 <e(z™) < max p (X(”*l) =g DIXM) = )y = y) <<1 (13)

x(nfl)

Using Bayes rule and ignoring the contribution of €, one obtains the following
equation:

. arg max {p(y = y|XE) = zE)p(XxE) = x(L))} forn=1L
T arg max {p (Y = y|X® = 2)p(X®) = 20| X0+D) = 40+ for n <
(14)

where L is the coarsest scale of the multiscale pyramid. The solution is initialised
by determining the maximum a posteriori (MAP) estimate of the coarsest scale
field given the image Y. The MAP segmentation at the next finer scale, £ is
then found by computing the MAP estimate of X (™ given #("t1) and the image
Y, hence the name sequential MAP (SMAP) estimator. For our experiments, we
assumed a uniform prior for X(X) but in general, any suitable priors may be
used.
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3.2 Likelihood and Prior Probability Functions

We will assume that at a particular scale, the observed sites are conditionally
independent given their classes:

p(V=yIX® =) = T »(¥s =y =) (15)
s€S(n)

where the index s denotes individual sites at scale n, ys represents the ‘averaged’
feature vector of observed site Y and :cé”) correspond to segmentation classes
which have values taken from A = {1,2,...,c}, where ¢ is the total number of
classes.

The multiscale averaging to generate y, at each scale is achieved using the
lowpass subimages of Kingsbury’s complex wavelet decomposition (KCWD) [10]
of each feature component of y. The advantage of KCWD over the more conven-
tional discrete wavelet transform for multiscale representation of features lies in
the remarkable shift invariance property of the former approach. To illustrate,
the figure below shows grey-level feature averaging of ‘lenna’ using the lowpass
subimages of KCWD:

- N
g |
:L' [ VR

Fig. 4. Grey-level feature averaging of ‘lenna’ using the lowpass subimages of Kings-
bury’s complex wavelet decompostion at scales (from left) n = 0,1, 2 and 3 respectively,
with excellent shift invariance

We choose to model p(Ys = ys|X§n) = xgn)) as a Gaussian distribution:

1w

where ||| denotes Euclidean distance. The variance parameter o, typically in-
creases with segmentation resolution, which agrees with the increased class un-
certainties at finer scales.

From our assumptions on the label field X, we have:

p (X0 =X 4D =50 0) = T p (X0 =2l x [ = ()
s€S(n)

p(Ys =y X = af )) o aexp{—ﬁ‘ys,lﬁ )

(17)
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where ds denotes the neighbourhood structure shown in Fig. [3l We choose the
following form for the right-hand-side term above:

P (X‘gn) _ |X(n+1) i, XD S x (kD) g () l) _

sy LD ds3

—ay

T (3mi + 2+ 2k + 20m) + (18)

where 0., , represents the unit delta function. The scale dependent parameter

€ [0, 1], determines the probability that the class of the fine scale site remains
the same as that of one of the coarser scale local neighbourhood. Conversely,
1 — «,, is the probability that a new class will be randomly chosen from the
remaining classes.

3.3 Parameter Estimation

In order for the method to be adaptive to the segmentation at hand, the MSRF
model parameters has to be estimated at each scale. A Markov Chain Monte
Carlo (MCMC) sampling approach is used in a predetermined sequential scan to
sample the model parameters and the segmentation map from their conditional
distributions in a specific order. The conditional distributions of the segmenta-
tion map and the model parameters are difficult functions to maximise because
they are multimodal and the vast combined parameter spaces are composed of
both continuous and discrete subspaces. The Metropolis-Hastings algorithm [7],
1] is a robust MCMC optimisation algorithm which is ideally suited to be
applied to these types of problem.

The stochastic relaxation process of simulated annealing [6] is used. At initial
high temperatures, the probability of acceptance is very high but it reduces with
the gradual cooling of the annealing temperature to reach the global maximum
at very low temperatures. The first step consist of sampling the class field. The
conditional distribution, from equations (IH) and (), is given by:

D (X(”) = M| XD = gDy —y 5 an) x

1

Ty
IT o = y2IX0) = 2. 0,0p(X 0 = 2l X5 = 5040, 0,
ses(n)
(19)

where T} is the annealing temperature at iteration ¢ of the algorithm and the
distributions for the likelihood and prior terms are given by (I6) and (I8) res-
pectively.

For the sampling of 0,, and «,,, the respective conditional distributions are:

0n (0l XV =2 Y = y)

I p(e =y X =2, 0,) | pon| X = () (20)
ses(n)
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an 2 plan| XMW = (W x (D) = n+1)y o

[T px(™ =2 xErt =2l an) | plan X0 = 257Y)
seS(n)

(21)

with the likelihood terms given by equations ([6) and (I8)) for o, and «,, res-
pectively. Non-informative or reference priors [9] were used for all experiments.

Our choice of the likelihood and prior probability distributions also makes it
possible for the dissimilarity term of (I6) and the delta function terms of (I8 to
be calculated for each segmentation class prior to the MCMC sampling proce-
dure. Therefore, these terms need to be computed only once and not repeatedly
for each iteration of the Metropolis-Hastings algorithm. This greatly decreases
the overall computation time. More importantly, as the computation of con-
ditional distributions at each site is independent of each other at a particular
iteration, dramatic speed-ups of calculations can be achieved using systems with
highly parallel architecture.

There has been much debate of how convergence might relate to the annealing
schedule used. Theoretically, the logarithmic schedule of [6] is guaranteed to
converge in infinite time. In practice, this is not implementable. We have adopted
a linear schedule which produces robust convergence in a relatively short time.

We now apply the complete algorithm to perform the challenging tasks of
colour and texture segmentation.

4 Colour Segmentation

Colour correlates with the class identity of an object because pigments form
part of the appearance of an object and thus provide vital cues for segmentation
purposes. In our paper, the perceptually uniform CIE L*a*b* space is used to
represent colour features. It is generated by linearly transforming the RGB colour
space to the XYZ colour space followed by a non-linear transformation. The
non-linear transformation is determined by relation to a nominally white object-
colour stimulus which gives the tristimulus values (X,,Yy, Zy). The lightness L*
is given by:

. 116(Y/Yyn)3 — 16 for (Y/Y,) > 0.008856 (22)
903.3(Y/Yn) for (Y/Y,) < 0.008856
The values a*,b* are given as follows:
a® =500 {f(X/Xn) = f(Y/Yn)} (23)

b* = 200 {f(Y/Ys) ~ f(Z/Z)} (24)
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where:

t3 for + > 0.008856
(t) = (25)

7.787t 4+ £5 for t < 0.008856

The distance between two colours as evaluated in L*a*b* space is simply the
Euclidean distance between them:

AEpape = v/ (AL*)24(Aa*)2+(Ab*)2 (26)

The CIE L*a*b* is as close to be perceptually linear as any colour space is
expected to get. Thus the distance measure in (Z6]) effectively quantifies the
perceived difference between colours.

Figures Bl and Bl show some typical colour segmentation results using our al-
gorithm. To determine the number of classes, mean shift clustering using h = 0.7
(in the normalised 5-dimensional Euclidean space) were used for all experiments
to demonstrate that the kernel radius h is a robust parameter that does not re-
quire tedious ‘trial-and-error’ tinkering to achieve desired results for each image.

= S

Fig. 5. First row: The ‘hand’ image and the three classes segmented by the algorithm.
Second row: Segmentation results shown at every intermediate scale corresponding to
(from left) n =4,3,2,1 and 0 respectively

Segmentation of the ‘hand’ image shown in figure [{ shows the algorithm
being able to easily distinguish the human hand and the blue doughnut-like
object from the textured background. As shown by the segmentation result at
each scale, processing at coarse scales gives context to the segmentation based
on which processing at finer resolution achieves boundary refinement accuracy.

Figure Blshows more colour segmentation results. For the ‘jet’ image, the toy
jet-plane, its shadow and the background are picked out by the algorithm despite
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Fig. 6. First row: The ‘jet’ and ‘parrot’ image and their corresponding segmentations.
Second row: The ‘house’ and ‘fox’ image and their corresponding segmentations

the considerable colour variability of each object. Segmentation of the ‘parrot’
image reveals a fairly smooth partitioning with all major colours bounded by
reasonably accurate boundaries. The algorithm also produces a meaningful seg-
mentation of the ‘house’ image with the sky, walls, window frames, lawn and
trees/hedges isolated as separate entities. The ‘fox’ image poses a tricky problem
with its shadows and highlights but the algorithm still performs reasonably well
in isolating the fox from the background although there is inevitable misclasifi-
cation at the extreme light and dark regions of the fox due the L*a*b* features
used. Generally, for all the images, the well-defined region contours reflect the
excellent boundary tracking ablility of the algorithm while smooth regions of
homogeneous behaviour are the result of the multiscale processing.

5 Texture Segmentation

The figure below illustrates a texture feature extraction model. Basically
xz(m,n) is the input texture image which is filtered by h(k,!1), a frequency and
orientation selective filter, the output of which passes a local energy function
(consisting of a non-linear operator, f(.) and a smoothing operator, w(k,1)) to
produce the final feature image, v(m,n). Basically, the purpose of the filter,
h(k,1), is extraction of spatial frequencies (of a particular scale and orientation)
where one or more textures have high signal energy and the others have low
energy. A quadrature mirror wavelet filter bank, used in an undecimated version
of an adaptive tree-structured decomposition scheme [2], perform this task for
our experiments on textures.

Numerous non-linearity operators, f(.), have been applied in the literature,
the most popular being the magnitude, |z|, the squaring, ()? and the rectified
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Fig. 7. Block diagram of the texture feature extraction model

sigmoid, |tanh(ax)|. It has been found that squaring in conjuction with the
logarithm after the smoothing to be the best operator pair for unsupervised seg-
mentation from a set of tested operator pairs [I4]. For this reason, this operator
pair is used for our experiments.

Several smoothing filters are possible for w(k,l) and the Gaussian lowpass
filter is one candidate. The Gaussian lowpass filter has joint optimum resolution
in the spatial and spatial frequency domains, with its impulse response given by:

1 k2 412
wellol) = g e~ | 0

S

If we want to estimate the local energy of a signal with low spatial frequency, the
smoothing filter must have a larger region-of-support and vice versa. Hence, the
smoothing filter size may be set to be a function of the band centre frequency,
fo. With fo normalised (—1 < fo < 3), it has been suggested [8] that:

1
% = 3l 2%)

This smoothing filter is also scaled so as to produce unity gain in order for the
mean of the filter’s output to be identical to that of its input.

For dimension reduction and extraction of saliency, principal component ana-
lysis is performed on the raw wavelet features, v(m,n). The final feature space
for the texture segmentation task consists of two dimensions of textural features
(the top two principal components, which typically contribute more than 85%
of the total variances of the wavelet features) and one dimension of luminance.

Figure Rl shows some texture segmentation results. Again, as in colour seg-
mentation, mean shift clustering with kernel radius h = 0.7 is used to determine
the number of classes. For the ‘brodatz’ image, the algorithm is able to distin-
guish all 5 textures of the Brodatz texture mosaic and produced a highly accurate
segmentation map. The segmentation of the SAR image, ‘sar’ depicts remarka-
ble preservation of details as well as accurate boundary detection. The image
‘manassas’, an aerial view of the city of Manassas, Virginia provides an inte-
resting challenge to the algorithm, which as shown, is able to successfully isolate
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densely populated areas from roads and flat plains. The leopard of the image
‘leo’ is also successfully segmented from background grass and scrubs; ‘misclas-
sified’ regions constitute shadows and relatively large homogeneous regions of
black spots on the legs.

Fig. 8. First row: The ‘brodatz’ and ‘sar’ image and their corresponding segmentations.
Second row: The ‘manassas’ and ‘leo’ image and their corresponding segmentations

6 Summary and Discussion

In this paper, we have proposed a general multiscale approach for unsupervised
image segmentation. The method is general due to its independence of the fea-
ture extraction process and unsupervised in that the number of classes is not
known a priori. The algorithm is also highly flexible due to its ability to control
segmentation sensitivity and robust through the use of the mean shift procedure
and multiscale processing.

The mean shift procedure has been proven to perform well in detecting clu-
sters of complicated feature spaces of many real images. By controlling the kernel
size, the procedure is capable of producing classes whose associative properties
correspond well to a meaningful partitioning of an image. The Multiscale Ran-
dom Field model makes effective use of the inherent trade-off between class and
position uncertainty which is evident through the excellent boundary tracking
performance. This multiscale processing reduces computational costs by keeping
computations local and yet produces results that reflect the global properties of
the image.

The proposed method has been shown to perform well for colour and texture
segmentation of various images. It produces desirable segmentations with smooth
regions of homogeneous behaviour and accurate boundaries. We believe these
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segmentations possess a high degree of utility especially as precursors to higher
level tasks of scene analysis or object recognition.
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