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Abstract. There have been relatively little works to shed light on the
effects of errors in the intrinsic parameters on motion estimation and
scene reconstruction. Given that the estimation of the extrinsic and in-
trinsic parameters from uncalibrated motion apts to be imprecise, it is
important to study the resulting distortion on the recovered structure.
By making use of the iso-distortion framework, we explicitly charac-
terize the geometry of the distorted space recovered from 3-D motion
with freely varying focal length. This characterization allows us: 1) to
investigate the effectiveness of the visibility constraint in disambiguating
uncalibrated motion by studying the negative distortion regions, and 2)
to make explicit those ambiguous error situations under which the visibi-
lity constraint is not effective. An important finding is that under these
ambiguous situations, the direction of heading can nevertheless be accu-
rately recovered and the structure recovered experienced a well-behaved
distortion. The distortion is given by a relief transformation which pre-
serves ordinal depth relations. Thus in the case where the only unknown
intrinsic parameter is the focal length, structure information in the form
of depth relief can be obtained. Experiments were presented to support
the use of the visibility constraint in obtaining such partial motion and
structure solutions.

Keywords: Structure from motion, Depth distortion, Space perception,
Uncalibrated motion analysis.

1 Introduction

While there have been various works on the self-calibration problem, most face
difficulties in estimating the intrinsic parameters accurately. Two courses are
open to researchers. One approach is to enforce special camera displacements to
obtain better estimates of the intrinsic parameters [IBITTITGI20]. Another ap-
proach argues that as far as scene reconstruction is concerned, several weaker
structures (Projective, Affine) can be obtained without complete recovery of the
intrinsic parameters. While the mainstay of the research efforts adopts the di-
screte approach, [3J20] have recently formulated the problem in the continuous

D. Vernon (Ed.): ECCV 2000, LNCS 1842, pp. 664-[677, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Characterizing Depth Distortion Due to Calibration Uncertainty 665

domain. Most of the schemes presented assume that the intrinsic parameters
across the frames are constant. A more general treatment of the problem, allo-
wing for varying intrinsic parameters, is given in [2[3/[T0/T2I15/1720].

There have been relatively little works to shed light on the effects of errors in
the intrinsic parameters on motion estimation and scene reconstruction. Florou
and Mohr [8] used the statistic approach to study reconstruction errors with res-
pect to calibration parameters. Svoboda and Sturm [I8] studied how uncertainty
in the calibration parameters gets propagated to the motion parameters. Viéville
and Faugeras studied the partial observability of rotational motion, calibration,
and depth map in [20]. Bougnoux [2] offered a critique of the self-calibration pro-
blem, finding that the estimation of various intrinsic parameters are unstable.
However, it was observed, partly empirically, that despite uncertainty in the focal
length estimation, the quality of the reconstruction does not seem to be affec-
ted. Certain geometrical properties such as parallelism seemed to be preserved.
Aside from this observation, there has not really been an in-depth geometrical
characterization of the errors in the reconstructed depth given some errors in
both the intrinsic and the extrinsic parameters.

In this paper, we consider the common situation where all of the intrinsic
parameters are fixed except the focal length. The focal length can be freely
varying across frames, resulting in a zoom field (considering infinitesimal motion)
which is difficult to separate from that of a translation along the optical axis.
This, together with the perennial problem of the coupling between translation
and rotation, means that distortion in the recovered structure is likely to be
present.

This paper attempts to make the geometry of this distortion explicit by
using the iso-distortion framework introduced in [4]. The motivation for perfor-
ming this analysis is twofold: first, to seek to characterize the distortion in the
perceived depth; second, to extend our understanding on how depth distortion in
turn interacts with motion (including zoom) estimation. It is an alternative look
at the problem of depth representation from the usual stratified viewpoint [6],
but one that will inform one another.

This paper is structured along the following lines. First comes some prelimi-
naries regarding the iso-distortion framework in Section 2, followed by an exten-
sion of this framework to the self-calibration problem. Several major features of
the resulting distortion are then made explicit. The main goals of Section 3 are
(1) to elaborate the relations between the depth distortion and the estimation
of both the intrinsic and extrinsic parameters; and (2) to study certain well-
behaved depth distortion resulting from ambiguous solutions. Section 4 presents
experiments to support the use of the visibility constraint in obtaining partial
solutions to the estimation of both motion and structure. The paper ends with
a summary of the work.
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2 Iso-Distortion Framework

2.1 Pre-requisites

If a camera is moving rigidly with respect to its 3D world with a translation
(U, V,W) and a rotation («, 3,7), together with a zooming operation, the resul-
ting optical flow (u,v) at an image location (z,y) can be extended from its basic
form to include the following terms:
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where f is the focal length of the camera;
f is the rate of change of the focal length;
(zo,y0) = (f %, ) is the Focus of Expansion (FOE) of the flow field;
and Z is the depth of scene point.

2.2 Space Distortion Arising from Uncalibrated Motion

In a recent work [4], the geometric laws under which the recovered scene is di-
storted due to some errors in the viewing geometry is represented by a distortion
transformation. It was called the iso-distortion framework whereby distortion in
the perceived space can be visualized by families of iso-distortion lines. In the
present study, this framework has been extended to characterize the types of
distortion experienced by a visual system where a change in the focal length
may result in further difficulties and errors in the estimation of its calibration.
From the well-known motion equation, the relative depth of a scene point
recovered using normal flow with direction (n,n,) may be represented by

(x — 20,y — yo)-(Na; 1y) (3)

2= Ctm = (T 115) ()

where u, is the normal flow magnitude;
u, is the rotational flow; and
uy is the zoom flow caused by a change in the focal length.

If there are some errors in the estimation of the intrinsic or the extrinsic pa-
rameters, this will in turn cause errors in the estimation of the scaled depth, and
thus a distorted version of space will be computed. By representing the estima-
ted parameters with the hat symbol (") and errors in the estimated parameters
with the subscript e (where error of any estimate p is defined as p. = p— p), the
estimated relative depth Z may be expressed in terms of the actual depth Z as
follows:
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- (x — Zo)ng + (¥ — Yo)n
Z2=2 (@ — 20,y — Y0).(Na, Ny) + Upe. (Mg, ny) Z +2fe.(ni,ny)Z + NZ) (@)
where .. = u, — U, )
= (Fla—a) - O+ 56 = 5) +y(r =),
=25 — §) + f(1+ B)a — &) — 20y~ 7))
Ufe = Uf — Uf = (f ! 7fffy) and

N is a noise term representmg error in the estimate for normal flow value.

Equation (@) shows that errors in the motion estimates distort the recovered
relative depth by a factor D, given by the terms in the bracket:

D — (33 - fO)nw + (y - ﬁo)”y
(x — 20,y — Y0).- (g, Ny) + Ure. (Mg, Ny) Z + Uge.(Ng,ny) Z + NZ

(5)

Equation (B) describes, for any fixed direction (n,,n,) and any fixed distortion
factor D, a surface f(x,y,Z) = 0 in xzyZ-space, which has been called the iso-
distortion surface. For specific values of the parameters xzq, yo, Zo, Yo, Qe, Oe,

Yey fs f, f and (ng,ny), this iso-distortion surface has the obvious property
that points lying on it are distorted in depth by the same multiplicative factor
D. The distortion of the estimated space can be studied by looking at these
iso-distortion surfaces. In order to present the these analyses visually, most of
the investigation will be conducted by initially considering (n;,n,) to be in
the horizontal direction. Ignoring the noise term N, we get the following set of
equations for different values of D:

Tr = fo it D=0
7 = uf0+1ffe if D — +c0 (6)
7 = IDD(U;G:%E) + %(ufjﬁ‘;?) otherwise

where the superscript z indicates the projection of vector onto the horizontal
direction.

Now, if we were to consider the field of view of the camera to be small and
ignore the effect of v, so that u,. becomes (—f.f, aef), we have

z = if D=0
Z= s if D — +o00 (7)

L —To Zoe

== (7fﬁe+5 -)+ %(7—1%6—(-6&) otherwise

x‘ |
[~

where §, =

These equations describe the iso-distortion surfaces as a set of surfaces per-
pendicular to the 2-Z plane. Much of the information that equations () contain
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can thus be visualized by considering a family of iso-distortion contours on a
two-dimensional x-Z plane. Each family is defined by four parameters: 0 and
the three error terms x0., 3. and J.. Within each family, a particular D defines
an iso-distortion contour. Figure [l corresponds to two particular cases of the
iso-distortion contours. In the next subsection, we shall determine the salient
geometrical properties of the iso-distortion contours.

(2) (b)

Fig. 1. Iso distortion contours for (a) zo = 30, zo. = 50, 8. = 0.001, J. = 0.05 and
f = 350. (b) When 6. = —0.05. (Shaded region corresponds to the negative depth
region.)

2.3 Salient Properties

Several salient features can be identified from the plot.

1) The D = 0 curve is a vertical line that intersects the z-axis at #y. Any
change in the estimated FOE will slide this line along the z-axis.

2) The D = £o0o curve intersects the x-axis at xo and approaches to Z = é as
x tends to infinity. The structure of the D = +oo contour is independent of
the position of the estimated FOE but on the true FOE location.

3) The contours intersect at a singular point where z = 2y and Z = ﬁ.
At this point, the depth of the scene is undefined.

4) The vertical asymptote for all contours where D # 0 is z = fé—%.

5) The horizontal asymptote for each contours where D # 0 is the line Z =
%. Hence, each contour has a different horizontal asymptote depending on
the values of D. However, the horizontal asymptote for the contour D =1 is
always the z-axis, independent of other parameters. A diminishing value in
d. simultaneously moves the horizontal and vertical asymptotes away from
the image center. It approaches the iso-distortion configuration under the

case of calibrated motion [4].
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3 What Can the Distortion Contours Tell Us?

3.1 Confusion between Translation, Rotation, and Zoom

It is well-known that we cannot numerically raise the ambiguity between several
intrinsic and extrinsic parameters. For instance, there is a strong ambiguity
between a translation along the optical axis and a zoom. In this subsection, we
briefly look at the numerical aspect of this problem before studying how the
iso-distortion framework can be utilized to yield useful information.

One straightforward way of estimating the motion parameters would be to
hypothesize a FOE. Flow vectors are then projected to the gradient direction n’
perpendicular to the emanated lines from the hypothesized FOE so that they
contain only the rotational and the zoom field (if the hypothesized FOE were
correct). The least square formulation is as follows:

(F F+ B))nd (<f(L+ ), =)t (o, —af) ' (o)

2 @ R

The conjecture is that, for the correct FOE candidate, the residual should
be the smallest among all candidates, since the least square equations correctly
model the situation. Thus, the least square residual furnishes a feasible measure
upon which to base the FOE candidate selection. However, this formulation has
several problems. Consider the true FOE candidate: as far as this candidate is
concerned, the last column of the the matrix in Equation (§) can be rewritten
as (zo,y0).m’ since in this case (2%,y").n’ = (x0,y0).n’,Vi. Thus, when the
FOE is at the image center (i.e. (zo,y0)=(0,0)), the least square estimation in
Equation (§) becomes rank deficient and this gives an infinite set of solutions.
Hence, from the least-square fitting formulation, we are not able to separate a
pure forward translation from a zoom. Now, if the FOE lies near to the image
center, the least square estimation becomes unstable, which can be analyzed by
using the concept of condition number. Similar conclusions can be derived for
various other algorithms, for instance that of Brooks [3].

Thus, the least-square fitting residual cannot be the final criteria for choosing
the correct FOE. Rather, we have to look for additional constraint to prune the
set of possible solution candidates.

3.2 The Visibility Constraint

Direct motion algorithms [I3][7] often attempt to find the solution by minimizing
the number of negative depth found. This is known as the visibility constraint.
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However its usage in the estimation of uncalibrated motion is relatively unex-
plored. We would now like to examine this constraint in the light of the negative
distortion region. The geometry of the negative distortion region allows us to
examine these questions: does the veridical solution have the minimum number
of negative depth? Are there combination of estimation errors such that the vi-
sibility constraint is not sufficient to discriminate between alternative solutions?
Do these ambiguous solutions exhibit any peculiar properties in terms of their
recovered structure or their motion estimates? To study these questions, we con-
sider the distortion plot for the horizontal flow first, before considering those in
other directions.

3.3 Constraints on Motion Errors

Comparing Figures [ (a) and (b), the first observation is that if a particular
solution has a negative d., the distortion plot will be such that the majority of
the negative distortion regions lie in front of the image plane. Irrespective of the
actual scene structure, there will be a large number of negative depth estimates
obtained, thereby ruling out that particular solution. Thus the first condition
on the motion errors for ambiguity to arise is that the zoom error flow must be
such that:

5e >0 9)

in which case most of the negative distortion region lie behind the image plane.
What remains in front of the image plane is a band of negative distortion region,

bounded by two contours, the D = 0 and the D = —o0o contours, whose equations
are respectively x = Zp and Z = % The latter cuts the horizontal axis
f Be

at * = zo and its vertical asymptote is given by z = We now derive
the combination of errors such that this negative band w1ll be minimized (i.e.
ambiguity is maximized).

To derive these combinations, we first arbitrarily fix the error §. and suppose
it satisfies the constraint given in ([@). The constraints on the other parameters
ﬂA and Zo that will yield minimum negative distortion region depend on whether
an algorithm solves for these parameters separately or simultaneously:

1) If B is solved first and the estimate contains an error (., then the Zy that
minimizes the negative depth region, given these fixed J. and S, is:

_ 2x0 + (Zmaar + Zmin)fﬂe
2 + (Zmax + Zmin)ae

where we have assumed that depths in the scene are uniformly distributed
between Z,,in, and Z,,q.. See Figure [(a). This &g always lies between xg
and the vertical asymptote. Similar condition on (. can be derived if we
solve for o first.
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Fig. 2. Configuration for Minimum Negative Depth. (a)fixed d. and SBe. (b) fixed de.

2) If both 3 and % are solved together, then the solution that minimizes the
negative depth region is given by

fBe
de

Tg =39 =

that is, the z-component of the direction of heading is recovered veridically,
and the vertical asymptote x = % coincides with the line x = xg = I
so that the D = 0 and the D = —oco contours coincide. In this case, the
negative band in front of the image plane vanishes. See Figure P(b).

3) Furthermore, if the lines ¢ = xg,2 = &p and = = féﬂe are out of the image
(and on the same side), then even if they do not meet, the negative distortion
band would be outside the field of view. Thus, this solution will not yield
any negative depth estimates and would be totally ambiguous too.

To both summarize and to complete the analysis, we consider flows in any other
gradient direction. The preceding conditions can be generalized as:

(ﬁe; ae)f

1
5 ; 0e >0 (10)

(20, Y0) = (2o, 90) =
a solution which correctly estimates the direction of heading. (8., —c.) must be

in the same direction as (zo, yo) so that for any gradient direction (ng,n,), the

condition w = (x0,yo) can be satisfied for the same d.. In this case,

the negative dlthI‘thn region vanishes in front of image plane for all gradient
directions.

3.4 Distortion of Recovered Structure

The preceding analysis shows that the use of the visibility constraint does not
lift the ambiguities that exist among various kinds of motions. However it does
restrict the solution set so that those yielding the minimum negative depth esti-
mates possess certain nice properties, such as the direction of heading is correctly
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estimated. Furthermore, as can be seen from Figure 2] the iso-distortion contours
become horizontal, resulting in well-behaved distortion. Indeed, the distortion
factor D in this case has the form of a relief transformation -, where a = 1
and b = .. This relief transformation preserves the ordering of points; its ge-
neral properties were recently discussed and analyzed by [9I14]. As a result of
this distortion, the reconstructed scene may appear visually perfect even though
the depths have been squashed to various degrees. It is of interest to compare
this result with that demonstrated by Bougnoux [2]: that the uncertainty on the
focal length estimation leads to a Euclidean calibration up to a quasi anisotropic
homothety, which in turn yields visually good-looking reconstruction.

4 Experiments

This section presents the experiments carried out to support the theoretical
findings established in the preceding section. Specifically, we demonstrate the
ability to correctly estimate the heading direction of the camera based on mi-
nimizing the number of negative depth estimates. The distortion effects due to
erroneous motion estimates on simple surfaces were also tested. In our experi-
ments, both synthetic and real images were used.

4.1 Synthetic Images

A set of noise-free synthetic images with dimension 240 pixels by 320 pixels were
generated. The focal length of the projection was fixed at 600 pixels. This gave
a viewing angle of near 30°. Three simple planes with different orientation at
different 3-D depth were constructed in the image. The true FOE was located
at (65,0) of the image plane and the rotational parameters («, 3,) have the

values (0,—0.00025,0). There was no change in the focal length (i.e. § =0).

We first arbitrarily fixed the error é. to be some positive number. We then
solved for the rotational parameter (3) and the FOE () in the following man-
ner: For each hypothesized B, we selected the best Zy candidate such that the
minimum number of negative depth estimates was obtained. The search range
for 3 lies between -0.005 to 0.005. The top ten candidates with the least amount
of negative depth estimates are tabulated in Table[I]

In this experiment, all ten candidates gave no negative depth estimates. One
possible explanation is that there is a lack of depth variations in the synthetic
image (the range of the motion flow lies between 0.000167 to 1.170667). Another
observation is that the selected zy for any Jéj always resides between the vertical
asymptote ! 66 < and the true FOE z.

Figure BI;) depicts the variations of the percentage of negative depth esti-
mates as a function of the estimated #y when the vertical asymptote is at the
veridical FOE position. The figure corroborates our theoretical predictions that
the least amount of negative depth estimates (in this case 0) is obtained when
ro = Zo. Similar curves are obtained when the vertical asymptote is not at
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the veridical FOE position. In theory, if there were sufficient feature points, the
minimum points of these curves should be higher than those of the former.

Using the erroneous motion estimates 7, fﬁ and 6; that resulted in the
least amount of negative depth estimates, we attempted to reconstruct the syn-
thetic planes. Figure B[(b) shows the plan view of the three synthetic planes,
together with their reconstructed versions. It can be seen that the relief of the
plane remained unchanged after the transformation, i.e., the ordinal depth were
preserved. Note that the metric aspect of the plane orientations (their slants)
was altered. This change can be related to the calibration uncertainties via the
complex rational function given in Equation ().

Table 1. Top ten candidates in the synthetic image experiment. xg = 65.

IB: T58]59[60[61[62]63[64]65]66]67
7o |63|64|64|64|64|65(65(65|65|66

(a) (b)

Fig. 3. (a) Variations of amount of negative depth estimates as a function of Zy for
synthetic images. (b) Synthetic planes (A,B and C) with their reconstructed versions
(dotted lines)

4.2 Real Images

For real images, we used a sequence whose dimension has been scaled down to
287 pixels by 326 pixels. The focal length and the field of view of the camera
were respectively 620 pixels and approximately 30°. The rotational parameter
(v, B,7) was (-0.00013,-0.00025,0) and f = 0. The true FOE was at image loca-
tion (65,73). A similar experimental procedure to the synthetic experiment was
applied to the real images. The top 10 candidates obtained are shown in Table
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When the vertical asymptote was at 64, the variations of the percentage of
negative depths obtained as a function of the estimated %y is plotted in Fi-
gure fla). We obtained a similar curve to the synthetic case. However, due to
the presence of noise, the minimum amount of negative depth obtained was not
zero and the best 2y was located at 64 (about 1 pixel from the true zg). The
procedure was repeated to locate the y-component of the FOE using the vertical
component of the normal flow vectors. The positions of the true and estimated
FOE are plotted in Figure E{(b).

Table 2. Top ten candidates for the real image experiment. zo = 65.

1L- 62 | 61 | 63 | 59 | 60 | 64 | 45 | 75 | 67 | 76
%o 64 | 63 [ 65 [ 61 [ 62 [ 66 | 46 | 78 | 69 | 79
NegDepth(%)0.097]0.110[0.117[0.130[0.145]0.147]0.152[0.154]0.157]0.159

(a) (b)

Fig. 4. (a) Variations of negative depth as a function of @y for real images. (b) Positions
of true and estimated FOE in the real image. (+ : true FOE at (65,73); x : Estimated
FOE at (64,74))

4.3 Discussions

The results obtained seem to corroborate the various predictions made in this
paper. In particular, while the use of visibility constraint cannot be used to effect
a full recovery of all the parameters, minimizing the number of negative depth
estimates do result in certain nice properties of the solutions. It seems that at
least in the case where the only unknown intrinsic parameter is the focal length,
structure information in the form of depth relief can be obtained from the motion
cue. The reconstructed depths did look visually alright due to the presentation
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of the depth relief. The results also validate the assumptions made in this paper
(that quadratic terms in the flow can be discarded), at least for field of view up
to 30°.

There are many problems that plague real image. Foremost among these is
the presence of noise. The effect of any noise N at a particular image pixel is
to replace the term ff3. in the numerator of the vertical asymptote x = ! f < by
fBe — N. Thus, to this particular image point, its effective vertical asymf)tote
has shifted and part of the problem lies in that this shift has different effects
on the various solution candidates. For the case of those solutions where the
negative distortion region in front of the image plane would have vanished under
noiseless conditions, this noise-induced shift away from z = zg may result in
that particular depth estimate becoming negative again (depending on the sign
and magnitude of that N). For the case of other solutions, this shift may have
the contrary effect of moving that point out of the negative distortion region. It
becomes plausible that the “desired” solutions (i.e. those satisfying (I0)) may
not have the minimum number of negative depth estimates. Thus, the overall
effect of noise is to reduce the effectiveness of the visibility constraint in getting
the “desired” solutions. In our experiment, we found that as long as fQ., the
error in the rotational flow, is large enough so that fG. — N ~ f[,, the location
of the FOE (zo,yo) could be determined quite accurately.

Other confounding factors for real images include the sparse distribution
of scene features. It holds that while the underlying negative distortion region
may have increased in size, there may not be any increase in the number of
negative depth estimates, due to a lack of scene point residing in the negative
distortion regions. Evidently, under such circumstances, the number of negative
depth estimates may not exhibit a monotonic increase as the error in the FOE
increases. Inspecting the top candidates selected in Table [, we observed that
this is indeed the case as g moves away from xg.

5 Conclusions and Future Directions

This paper represents a first look at the distortion in the perceived space resul-
ting from errors in the estimates for uncalibrated motion. The geometry of the
negative distortion region allows us to answer questions such as whether the vi-
sibility constraint is adequate for resolving ambiguity. It is also found that while
Euclidean reconstruction is difficult, the resulting distortion in the structure
satisfies the relief transformation, which means that ordinal depth is preserved.

A concluding caveat is in order concerning real zoom lens operation. The prin-
cipal point often changes when the focal length varies. Hence, an analysis based
on a more detailed distortion model should be carried out. Our iso-distortion mo-
del can be readily extended to take into account these changes and this would
be our future work.

To close this paper, the remark should be added that there are many potential
applications of the results of our research to areas like multimedia video indexing,
searching and browsing, where it is common practice to use zoom lenses. It is
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desirable to incorporate partial scene understanding capabilities under freely
varying focal length, yet without having to go through elaborate egomotion
estimation to obtain the scene information. The conclusion of this paper is that
while it is very difficult to extract metric scene descriptions from video input,
qualitative representations based on ordinal representation constitute a viable
avenue.
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