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Abstract. In principle, the recovery and reconstruction of a 3D object
from its 2D view projections require the parameterisation of its shape
structure and surface reflectance properties. Explicit representation and
recovery of such 3D information is notoriously difficult to achieve. Al-
ternatively, a linear combination of 2D views can be used which requires
the establishment of dense correspondence between views. This in gen-
eral, is difficult to compute and necessarily expensive. In this paper we
examine the use of affine and local feature-based transformations in es-
tablishing correspondences between very large pose variations. In doing
so, we utilise a generic-view template, a generic 3D surface model and
Kernel PCA for modelling shape and texture nonlinearities across views.
The abilities of both approaches to reconstruct and recover faces from
any 2D image are evaluated and compared.

1 Introduction

In principle, the recovery and reconstruction of a 3D object from any of its 2D
view projections requires the parameterisation of its shape structure and surface
reflectance properties. In practice, explicit representation and recovery of such
3D information is notoriously difficult to achieve. A number of shape-from-X
algorithms proposed in the computer vision literature can only be applied on
Lambertian surfaces that are illuminated through a single collimated light source
and with no self-shadowing effects. Atick et al. [1] have applied such a shape-
from-shading algorithm to the reconstruction of 3D face surfaces from single 2D
images. In real-life environments, however, these assumptions are unlikely to be
realistic.

An alternative approach is to represent the 3D structure of objects, such
as faces, implicitly without resorting to explicit 3D models at all [3, 14, 15, 17].
Such a representation essentially consists of multiple 2D views together with
dense correspondence maps between these views. In this case, the 2D image
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coordinates of a point on a face at an arbitrary pose can be represented as a
linear combination of the coordinates of the corresponding point in a set of 2D
images of the face at different poses provided that its shape remains rigid. These
different views span the space of all possible views of the shape and form a vector
space. The shape of the face can then be represented by selecting sufficient local
feature points on the face. Such representation requires the establishment of
dense correspondence between the shape and texture at different views. These
are commonly established by computing optical flow [3, 19]. In general, a dense
correspondence map is difficult to compute and necessarily expensive. Besides, an
optical flow field can only be established if the neighbouring views are sufficiently
similar [3].

One can avoid the need of dense correspondence by considering a range of
possible 2D representation schemes utilising different degrees of sparse corre-
spondence. In the simplest case, transformations such as translation, rotation
and uniform scaling in the image plane can be applied to a face image to bring
it into correspondence with another face image. Such transformations treat im-
ages as holistic templates and do not in general bring all points on the face
images into accurate correspondence. This transformation results in a simple
template-based representation that is based only on the pixel intensity values of
the aligned view images and does not take into account the shape information
explicitly. Such representation, for example, was used by Turk and Pentland to
model Eigenfaces [16].

Alternatively, a local feature-based approach can be used to establish cor-
respondences only between a small set of salient feature points. Correspon-
dences between other image points is then approximated by interpolating be-
tween salient feature points, such as corners of the eyes, nose and mouth. In
Active Appearance Models (AAM) Cootes et al. bring two views into alignment
by solving the correspondence problem for a selected set of landmark points [4].
The face texture is then aligned using a triangulation technique for 2D warp-
ing. In AAM, however, correspondences can only be established between faces
of similar views.

Ultimately, modelling view-invariant appearance models of 3D objects, such
as faces across all views relies on recovering the correspondence between lo-
cal features and the texture variation across views. This inevitably encounters
problems due to self occlusion, the non-linear variation of the feature positions
and illumination change with pose. In particular, point-wise dense correspon-
dence is both expensive and may not be possible across large view changes since
rotations in depth result in self occlusions and can prohibit complete sets of
image correspondence from being established. However, the template-based im-
age representation such as [6, 16] did not address the problem of large 3D pose
variations of a face. Recognition from certain views is facilitated using piece-
wise linear models in multiple view-based eigenspaces [9]. Similarly Cootes et
al. [4] do not address the problem of non-linear variation across views and aimed
only at establishing feature-based correspondences between faces of very similar
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views. In this case, small degrees of non-linear variations can also be modelled
using linear piece-wise mixture models [5].

Romdhani et al. [10, 11] have shown that a View Context-based Nonlinear
Active Shape Model by utilising Kernel Principal Components Analysis [13, 12]
can locate faces and model shape variations across the view-sphere from profile
to profile views. This approach is extended here in a Face Appearance Model
of both Shape and Texture across views. We introduce two different methods in
establishing correspondences between views. The first method uses affine trans-
formation to register any view of a face with a generic view shape template. An
alternative feature-based approach is examined that utilises a generic 3D sur-
face model. We present the two approaches and examine the ability of the two
correspondence methods to reconstruct and recover face information from any
2D view image.

In Section 2 of this paper, we introduce a generic-view shape template model
and a generic 3D surface model to be used for establishing feature-based cor-
respondences across poses. A Pose Invariant Active Appearance Model using
Kernel PCA is discussed in Section 3. In Section 4, we present experimental
results and comparative evaluations before we conclude in Section 5.

2 Feature Alignment Across Very Large Pose Variations

Accurately modelling the texture of an object requires the corresponding fea-
tures to be aligned. However, achieving this geometric normalisation across views
under large pose variation is nontrivial. Cootes et al. [4] and Beymer [2] both
align the features of face images on the mean shape of a fixed pose. While this
technique is valid when dealing with faces at the same or very similar pose, it is
clearly invalid for faces which vary from profile to profile views as illustrated in
Fig. 1.

Fig. 1. Left: Examples of training shapes. Right: The average shape, and the average
shape overlapping the frontal view.

A new correspondence and alignment method is required that must address the
following issues:

1. Due to self occlusion, some features visible at one pose are hidden at another
pose (e.g. the left eye is hidden from the left profile). This problem can be
addressed possibly by two methods: (a) Hidden features can be made explicit
to the model without regenerating their texture by utilising a generic-view
shape template and establishing affine correspondence between views. (b)
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A generic 3D face surface model can be utilised to establish feature-based
correspondence. The hidden features are regenerated using the information
of the visible features, based on the bilateral symmetry of faces.

2. Pose change is caused by head rotation out of the image plane. This means
that the features’ positions vary nonlinearly with the pose and a feature
alignment algorithm must be able to cope with nonlinear deformations. We
use Kernel PCA to model nonlinear deformations of both the shape and the
texture of a face across pose.

In this paper we discuss two correspondence and alignment methods and
evaluate their ability to recover and reconstruct faces from any 2D image. The
first alignment technique establishes affine correspondences between views by
utilising a generic-view shape template. The second approach uses a local feature-
based approach to establish correspondences between views by utilising a generic
3D surface model.

First let us define some notations. A shape X is composed of a set of Ns

landmark points xi and the texture v of a set of Nt grey-level values vi:

xi = (xi, yi)
T ,X = (x1, . . . ,xNs)

T ,v = (v1, . . . , vNt) (1)

The shape X of any single view is composed of two types of landmark points:
(a) Xout, the outer landmark points which define the contour of the face and,
(b) Xin, the inner landmark points which define the position of the features such
as mouth, nose, eyes and eyebrows.

In particular, 25 outer landmark points define the contour of the face and 55
inner landmark points define the position of the features such as mouth, nose,
eyes and eyebrows. The landmarks that correspond to salient points on the faces
are placed manually on the training images whereas the remaining landmarks are
evenly distributed between them. This is illustrated in Fig. 2. First, landmarks
A, B, C, D and E that are selected to correspond to points on the contour at the
height of the eyes, the lips and the chin-tip were set. Then the remaining outer
landmarks are distributed evenly between these 5 points. Note that as the view
changes the positions of the outer landmarks change accordingly.

Fig. 2. Shapes overlapping faces at pose −30◦, 0◦ and 30◦. The salient outer land-
marks (in white) are first manually set then the other outer landmarks (in black) are
distributed evenly between the salient ones.
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2.1 2D Generic-View Shape Template based Alignment

The 2D Generic-View Shape Template Alignment method uses affine transfor-
mations to establish correspondences across very large pose variations. It utilises
a generic-view shape template, denoted by Z, on which the landmark points of
each view are aligned. The generic-view shape template Z is computed based on
M training shapes and the following alignment process:

1. The training shapes X of each view are scaled and aligned to yield shape X̃:

X̃ =
(X − xk)

‖xk − xl‖ (2)

where k refers to the landmark located on the nose-tip and l to the chin-tip.
2. These aligned shapes are superimposed.
3. The resulting generic-view template shape is formed by the mean of the inner

landmark points and the extreme outer landmark points:

Zin =
1

M

M∑

i=1

(X̃in,i) (3)

zout,j = x̃i,j if x̃i,j 6⊂ Zout (4)

∀ i = 1, . . . ,M, j = 1, . . . , Ns

Z = H(Zout,Zin) (5)

where x̃i,j 6⊂ Zout is true if the point x̃i,j is not included in the area of the
shape Zout and H(·) is the operator which concatenates an outer shape and
an inner shape, yielding a complete shape.

The process for creating the generic-view shape template is illustrated in
Fig. 3.

Fig. 3. Left: Left profile, frontal view and right profile shapes aligned with respect to
the nose-tip. Right: A generic-view shape template which includes a set of inner feature
points as illustrated.

To align the shape and the texture to the generic-view shape template, a fast
affine transformation is applied. Examples of aligned textures at different poses
is shown in Fig. 4.

To utilise the generic-view shape template, all feature points including the
hidden features are made explicit to the model all the time: A special value of
grey-level is used to denote hidden points (0 or black).
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Fig. 4. Example of aligned textures at different poses

In addition, the initial alignment performed is coarse and is exact only for
the nose-tip. The other features are only approximately aligned as illustrated in
Fig. 5. The z axis of this 3D graph is proportional to the distance covered by
a landmark point on the aligned shape as the pose vary from profile to profile.
Ideally this distance for all landmark points should be null, as it is for the nose-
tip. Once the initial bootstrapping of the texture alignment is performed, Kernel
PCA is applied to minimise the error of the aligned shape X̂ and the generic-view
shape template Z.

Fig. 5. Variance of the error for inner features alignment across pose. The z axis repre-
sents the distance covered by a landmark point as the pose vary from profile to profile
relative to the face width.

2.2 3D Generic Surface Model based Alignment

We introduce a second feature alignment technique based on a generic 3D surface
model shown in Fig. 6. It is composed of facets and vertices and constructed using
the average of the 3D surface of training faces. A feature-based approach is used
to establish correspondence between the 3D model and the 2D image views of
a face. Landmarks on the 3D model are placed in the same manner to that of
the face images described earlier. In total 64 facets are selected to correspond to
the 64 landmarks registered on the images (the eyebrows’ landmarks were not
used for the alignment). The inner landmark points are placed in facets that
correspond to features such as eyes or nose, whereas the outer landmark points
are placed on facets that correspond to the extreme outer boundaries of the face
model. Examples of the outer landmark points placed on the 3D model is shown
in Fig. 6. A property of the outer landmark points of the generic 3D surface
model is that their position can vary to outline the outer boundaries of any 2D
projected view of the 3D model.
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Fig. 6. Examples of landmarked facets on the generic 3D surface model.

The feature-based alignment algorithm used to establish the correspondences
between the 3D surface model and a 2D face image is outlined in Fig. 7, and
consists of the following steps:

1. 3D Model Rotation: First the generic 3D surface model is rotated to
reflect the same pose as that of the face in the image.

2. 3D Landmarks Recovery: The position of the landmarks on the 3D
generic model relative to the rotated pose are examined in order to deter-
mine: (a) which inner landmark points are visible at this pose and therefore
can be used for alignment and, (b) the new position of the outer landmark
points so that the current visible outer boundary of the generic 3D model is
outlined. This process ensures that the landmarks on the generic 3D model
correspond to the face image landmarks at that pose.

3. 2D Projection of the Generic 3D Model: Once the new position of the
landmark points of the 3D model has been established, the 2D projection of
the generic 3D model at that pose is computed.

4. 2D Texture Warping: A triangulation algorithm is used to warp the face
image on the 2D projection of the 3D model using the landmarks recovered
at step 2.

5. Hidden Points Recovery: The grey level values of the hidden points are
recovered using the bilateral symmetry of faces.

6. Aligned Texture: Our aligned texture is a flattened representation of the
3D texture.

Examples of alignment and reconstruction using the generic 3D surface model
are shown in Fig. 8. The difference of texture between the visible region and the
hidden region is often contrasted due to the lighting conditions. It can be noted
that the aligned profile view of an individual is different from the aligned frontal
view of the same individual. A more accurate alignment can be obtained using
a 3D model containing more facets and higher resolution images.

805Multi-view Appearance Models



INPUT IMAGE, SHAPE, POSE 3D MODEL with INITIAL LANDMARKS

ROTATED, LMP ADJUSTED to POSELMP CORR. TO 3D MODEL

POSE

RETAINED LANDMARKS

TEXTURE WARPED

HIDDEN POINTS RECOVERED

FLATTENED PROJECTION of TEXTURE

Fig. 7. Overview of the algorithm for aligning the texture of a face based on its shape
and its pose using a landmarked 3D model. After rotation of the 3D model, its land-
marks are adjusted: the hidden inner points (3 landmarks on the bridge of the nose,
here) are dropped and the outer landmarks are moved to be visible. Then a 2D warping
is performed from the image to the 2D projection of the 3D model. Next, the grey-level
values of the hidden points are recovered using the symmetry of faces and the texture
is projected onto 2D yielding a flattened representation of the texture.
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original aligned reconstr. original aligned reconstr. original aligned reconstr.                                    

                                    

                                    

Fig. 8. Example of alignment of face images at different poses using the 3D Generic
Surface Model and their reconstruction.

3 Pose Invariant Appearance Model using Kernel PCA

Our process for constructing a pose invariant shape and texture model is illus-
trated in Fig. 9. The shape is represented as a vector containing the xi and yi
coordinates of Ns landmarks augmented with the pose angle θ as in the View
Context-based Nonlinear Active Shape Model [10]: (x1, y1, . . . , xN , yN , θ). Cootes
et al. [4] used a linear PCA to model the shape and texture of faces. However,
under very large pose variations the shape and texture vary nonlinearly despite
our texture alignment.

Kernel Principal Components Analysis (KPCA) [13] is a nonlinear PCA
method, based on the concept of Support Vector Machines (SVM) [18]. Ker-
nel PCA can also be regarded as an effective nonlinear dimensionality reduction
technique which benefits from the same features of PCA. KPCA does not require
more training vectors than normal PCA as opposed to mixture models. However,
there is one major drawback of KPCA. The reconstruction of a vector from the
KPCA space to the original space requires to solve an optimisation problem and
it is computationally expensive [8].

Romdhani et al. [10, 11] successfully used KPCA to model shape and vari-
ations from profile to profile views. KPCA is also used to model the aligned
texture. However, the combined shape and texture model is built with a linear
PCA. This is because our experiments verified that the correlation between the
shape and the texture is linear after KPCA has been applied to both shape and
texture individually.

As explained in Section 2, the model must be constructed using manually
landmarked training images. The projection of a landmarked new face image to
our model can be computed in a single step by computing (1) the projection of
its shape (defined by its landmarks), (2) the projection of the underlying texture
and (3) the projection of the combined shape and texture. However in the most
general case a new face image does not possess landmarks. Hence a fitting algo-
rithm is used which recovers the shape and computes the projection of a novel
face. This is achieved by iteratively minimising the difference between the image
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under interpretation and that synthesised by the model. Instead of attempting
to solve such a general optimisation problem for each fitting, the similar nature
among different optimisations required for each fitting is exploited. Hence, di-
rections of fast convergence, learned off-line, are used to rapidly compute the
solution. This results into a linear relationship between the image space error
and the model space error. Before this linear relationship is learned by an SVD
regression, a linear PCA is performed to reduce the dimensionnality of the image
space error and ease the regression. The iterative fitting algorithm described in
the following is similar to that used by Cootes et al. [4]:

1. Assume initial shape and pose. In the next Section we will detail the con-
straints set on the starting shape and pose for the algorithm to converge.

2. Compute a first estimation of the projection using the shape and pose from
step 1 and the texture of the image underlying the current shape.

3. Reconstruct the shape (along with its pose) and the aligned texture from
the current projection.

4. Compute the image space error between the reconstructed aligned texture
obtained in step 3 and the aligned texture of the image underlying the re-
constructed shape obtained in step 3.

5. Estimate the projection error using the image space error computed in step 4
along with the known linear correlation between the image space error and
the model space error computed off-line. This projection error is then applied
to the current projection.

6. Go back to step 3 until the reconstructed texture does not change signifi-
cantly.

Grey Level Normalisation

Pose Invariant Alignment

Appearance

Image

+

SVD

Linear PCA

-

Linear PCA

Kernel PCAKernel PCA

Shape Texture

Fig. 9. An algorithm for constructing a Pose Invariant AAM. The projection and back-
projection to and from the model are outlined in plain line. The generation of model
parameters for a novel image for which the shape is unknown (the model fitting process)
is outlined in dashed line.
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4 Experiments

To examine and compare the ability of the two approaches to reconstruct and
recover faces from any 2D image views we use a face database composed of
images of six individuals taken at pose angles ranging from −90◦ to +90◦ at 10◦

increments. During acquisition of the faces, the pose was tracked by a magnetic
sensor attached to the subject’s head and a camera calibrated relative to the
transmitter [7]. The landmark points on the training faces were manually located.
In the case of the generic 3D surface model we used a 3D surface model provided
by Michael Burton of the University of Glasgow. We trained three Pose Invariant
AAM (PIAAM) on the images of faces of six individuals at 19 poses. The first
PIAAM used a 2D generic-view shape template, the second a generic 3D surface
model containing 3333 facets and the third a generic 3D surface model containing
13328 facets. In the three cases ten, fourty, and twenty eigenvectors were retained
to describe the shape, the texture and the combined appearance respectively.

4.1 Face Reconstruction

Fig. 10 shows examples of reconstruction of the three PIAAM when the shape
and pose of the faces is known. The PIAAM using a generic 3D surface model
containing 3333 facets exhibits a “pixelised” effect. The accuracy of the recon-
struction of the PIAAM using a 2D generic-view shape template and of the
PIAAM using a generic 3D surface model containing 3333 facets is similar while
that of the PIAAM using a generic 3D surface model containing 13328 facets is
superior. However, the experiments of the next section show that 3333 facets is
sufficient to produce a good fitting.

4.2 Face Recovery Using the Pose Invariant AAM

2D Generic-view Shape Template Fig. 11 illustrates examples of recovering
the shape and texture of any 2D image view using a 2D generic-view shape
template-based PIAAM trained on five individuals.

While the shape (both pose and feature points) can be recovered adequately,
this is not the case for texture. Whilst the pose of the face can be recovered
correctly, the intensity information for all pixels is not always recovered. The
reason for such effect is that the alignment is only approximate and the variation
in the aligned texture due to the pose change overwhelms the variation due to
identity difference.

Generic 3D Surface Model Fig. 12 shows the recovery of faces from varying
poses using generic 3D surface model-based Pose Invariant AAM. The model
contained 3333 facets. The linear PCA used in the fitting regression was config-
ured to retain 99% of information yielding 626 eigenvectors. The iterative fitting
starts always from a frontal pose shape located near the face on the image and
can recover the shape and texture of any 2D image face view. Each iteration
takes about 1 sec. (on a normal Pentium II 333 MHz) and the convergence is
reached after an average of 4 iterations.
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Fig. 10. Example of reconstruction produced by three Pose Invariant AAM. The first
image is the original image, the second, the third and the fourth images are its recon-
struction yielded by the Pose Invariant AAM using the 2D generic-view shape tem-
plate, the 3D generic surface model containing 3333 facets and the 3D generic surface
model containing 13328 facets, respectively. The reconstructions are computed using
the manually generated shape.

4.3 On Model Convergence

The AAM introduced by Cootes et al. requires a good starting shape to reach
convergence [4]. That is, an estimation of the position of the face and of its pose
must be known. Fig. 13 depicts the dependency on this requirement for the Pose
Invariant AAM using the 2D generic-view surface template and the generic 3D
surface model by showing the proportion of searches which converged for different
initial displacement and pose offset. The 2D generic-view shape template-based
PIAAM is very constrained by its initial pose and location : if the pose is known
within 10◦ accuracy, it has 80% chances to reach convergence if the x offset is
within 4 pixels. However, the generic 3D surface model-based PIAAM has 80%
chances to reach convergence if the pose offset is within 50◦ and the x offset
within 4 pixels (Note that the faces have average of 30 pixels in x). This is
because the 3D surface model alignment is more accurate that the 2D generic-
view shape template alignment. As expected, the better the pose is known, the
lower the dependency on the estimation of the face location.

5 Conclusions

We have presented a novel approach for constructing a Pose Invariant Active
Appearance Model (PIAAM) able to capture both the shape and the texture of
faces across large pose variations from profile to profile views. We illustrated why
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original start iterations conv. shape            
pose: -90◦,

init. pose: -50◦,
init. offset: (0, 0)

shape error: (2.09, 0.76)            
pose: -50◦,

init. pose: 0◦,
init. offset: (-4, -3)

shape error: (3.67, 0.82)            
pose: -90◦,

init. pose: 0◦,
init. offset: (-6, 0)

shape error: (2.43, 0.97)            
pose: 90◦,

init. pose: 50◦,
init. offset: (-6, 0)

shape error: (0.87, 0.65)                                                            
pose: -40◦,

init. pose: 0◦,
init. offset: (0, -6)

shape error: (6.62, 2.84)

Fig. 11. Face recovery of a 2D generic-view shape template-based Pose Invariant AAM
trained on five individuals. Each row is an example of texture and shape fitting. The first
image is the original image, the following images are obtained at successive iterations.
The penultimate image shows the converged fitting of both shape and texture and the
last image overlaps the recovered shape on the original image.

the key to effective Pose Invariant AAM is the choice of an accurate but also
computationally viable alignment model and its corresponding texture represen-
tation. To that end, we introduced and examined quantitatively two alignment
techniques for the task: (a) A 2D Generic-view Shape Template using affine
transformations to bootstrap the alignment before it is further refined by the
use of Kernel PCA. (b) A Generic 3D Surface Feature Model using projected
dense 3D facets to both establish local feature-based correspondence between fa-
cial points across pose and recover the grey level values of those points which are
hidden at any given view. Our extensive experiments have shown that whilst the
reconstruction accuracy of the 2D generic-view template-based PIAAM is simi-
lar to that of a generic 3D surface feature-based PIAAM using 3333 facets, the
reconstruction performance of a generic 3D feature-based PIAAM using 13328
is superior. Furthermore, good fitting was produced using a PIAAM based on a
generic 3D surface model containing 3333 facets. On the other hand, the fitting
of a 2D generic-view shape template-based PIAAM was shown to have a greater
degree of dependency on the initial positions before fitting.
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Fig. 12. Face recovery of a PIAAM using the generic 3D surface model containing 3333
facets trained on six individuals. Each row is an example of texture and shape fitting.
The first image is the original image, the followings images are obtained at successive
iterations until convergence. Each fitting started from the frontal pose (0◦).
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