Skip to main content

Approximation Schemes for Degree-Restricted MST and Red-Blue Separation Problem

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2719))

Included in the following conference series:

  • 1886 Accesses

Abstract

We develop a quasi-polynomial time approximation scheme for the Euclidean version of the Degree-restricted MST by adapting techniques used previously for approximating TSP. Given n points in the plane, d = 2 or 3, and > 0, the scheme finds an approximation with cost within 1 + of the lowest cost spanning tree with the property that all nodes have degree at most d. We also develop a polynomial time approximation scheme for the Euclidean version of the Red-Blue Separation Problem.

Supported by David and Lucille Packard Fellowship, and NSF Grants CCR-0098180 and CCR-009818. Work done partially while visiting the CS Dept at UC Berkeley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. Proceedings of 37th IEEE Symp. on Foundations of Computer Science, 1996.

    Google Scholar 

  2. S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. JACM 45(5) 753–782, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey. Math Programming, 2003 (to appear). Available from www.cs.princeton.edu/~arora.

    Google Scholar 

  4. S. Arora and G. Karakostas. Approximation schemes for minimum latency problems. Proc. ACM Symposium on Theory of Computing, 1999.

    Google Scholar 

  5. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for the Euclidean k-medians and related problems. In Proc. 30th ACM Symposium on Theory of Computing, pp 106–113, 1998.

    Google Scholar 

  6. J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many points. Proc. Cambridge Philos. Soc. 55:299–327, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In [9].

    Google Scholar 

  8. A. Czumaj and A. Lingas. A polynomial time approximation scheme for Euclidean minimum cost k-connectivity. Proc. 25th Annual International Colloquium on Automata, Languages and Programming, LNCS, Springer Verlag 1998.

    Google Scholar 

  9. D. Hochbaum, ed. Approximation Algorithms for NP-hard problems. PWS Publishing, Boston, 1996.

    Google Scholar 

  10. S. Khuller, B. Raghavachari, and N. Young. Low degree spanning tree of small weight. SIAM J. Computing, 25:355–368, 1996. Preliminary version in Proc. 26th ACM Symposium on Theory of Computing, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. G. Kolliopoulos and S. Rao. A nearly linear time approximation scheme for the Euclidean k-median problem. LNCS, vol.1643, pp 378–387, 1999.

    Google Scholar 

  12. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys. The traveling salesman problem. John Wiley, 1985

    Google Scholar 

  13. C.S. Mata and J. Mitchell. Approximation Algorithms for Geometric tour and network problems. In Proc. 11th ACM Symp. Comp. Geom., pp 360–369, 1995.

    Google Scholar 

  14. J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple PTAS for geometric k-MST, TSP, and related problems. SIAM J. Comp., 28, 1999. Preliminary manuscript, April 30, 1996. To appear in SIAM J. Computing.

    Google Scholar 

  15. C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the traveling salesman problem. J. Algorithms 5(1984), pp. 231–246.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Raghavachari. Algorithms for finding low degree structures. In [9]

    Google Scholar 

  17. S. Rao and W. Smith. Approximating geometric graphs via “spanners” and “banyans.” In Proc. 30th ACM Symposium on Theory of Computing, pp. 540–550, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arora, S., Chang, K.L. (2003). Approximation Schemes for Degree-Restricted MST and Red-Blue Separation Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45061-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40493-4

  • Online ISBN: 978-3-540-45061-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics