Abstract
Relevance feedback mechanisms are adopted to refine image-based queries by asking users to mark the set of retrieved images as being relevant or not. In this paper, a relevance feedback technique based on the “dissimilarity representation” of images is proposed. Each image is represented by a vector whose components are the similarity values between the image itself and a “representation set” made up of the images retrieved so far. A relevance score is then assigned to each image according to its distances from the sets of relevant and non-relevant images. Three techniques to compute such relevance scores are described. Reported results on three image databases show that the proposed relevance feedback mechanism allows attaining large improvements in retrieval precision after each retrieval iteration. It also outperforms other techniques proposed in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bhanu, B., Dong, D.: Concepts Learning with Fuzzy Clustering and Relevance Feedback. In: Petra, P. (Ed.): Machine Learning and Data Mining in Pattern Recognition. LNAI 2123, Springer-Verlag, Berlin (2001) 102–116
Del Bimbo A.: Visual Information Retrieval. Morgan Kaufmann Pub. Inc., San Francisco, CA (1999)
Duin R.P.W., de Ridder D., Tax D.M.J.: Experiments with object based discriminant functions: a featureless approach to pattern recognition. Pattern Recognition Letters 18(11–13) (1997) 1159–1166
Duin R.P.W., Pekalska E., de Ridder D.: Relational discriminant analysis. Pattern Recognition Letters 20(11–13) (1999) 1175–1181
Frederix G., Caenen G., Pauwels E.J.: PARISS: Panoramic, Adaptive and Reconfigurable Interface for Similairty Search. Proc. of ICIP 2000 Intern. Conf. on Image Processing. WA 07.04, vol. III (2000) 222–225
Giacinto, G., Roli, F., Fumera, G.: Content-Based Image Retrieval with Adaptive Query Shifting. In: Petra, P. (Ed.): Machine Learning and Data Mining in Pattern Recognition. LNAI 2123, Springer-Verlag, Berlin, (2001) 337–346
Giacinto G., Roli F.: Query shifting based on Bayesian decision theory for content-based image retrieval. Proc. of S+SSPR2002, Canada, LNCS 2396, Springer-Verlag 607–616
Ishikawa Y., Subramanys R., Faloutsos C.: MindReader: Querying databases through multiple examples. In Proceedings. of the 24th VLDB Conference (1998) 433–438
Jain A.K., Dubes R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
Kuncheva L.I.: Fuzzy Classifier Design. Springer-Verlag (2000)
McG Squire D, Muller W., Muller H., Pun T.: Content-based query of image databases: inspirations from text retrieval. Pattern Recognition Letters 21(13–14) (2000) 1193–1198
Nastar C., Mitschke M., Meilhac C.: Efficient query refinement for Image Retrieval. Proc. of IEEE Conf. Computer Vision and Pattern Recognition, CA (1998) 547–552
Ortega M., Rui Y., Chakrabarti K., Porkaew K., Mehrotra S., Huang T.S.: Supporting ranked boolean similarity queries in MARS. IEEE Trans. on KDE 10(6) 905–925 (1998)
Peng J., Bhanu B., Qing S.: Probabilistic feature relevance learning for content-based image retrieval. Computer Vision and Image Understanding 75(1–2) (1999) 150–164
Rui Y., Huang T.S., Mehrotra S.: Content-based image retrieval with relevance feedback: in MARS. In Proceedings of the IEEE International Conference on Image Processing, IEEE Press (1997) 815–818
Rui Y., Huang T.S.: Relevance Feedback Techniques in Image retrieval. In Lew M.S. (ed.): Principles of Visual Information Retrieval. Springer-Verlag, London, (2001) 219–258
Salton G,, McGill M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1988)
Santini S., Jain R.: Integrated browsing and querying for image databases. IEEE Multimedia 7(3) (2000) 26–39
Santini S., Jain R.: Similarity Measures. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9) (1999) 871–883
Sclaroff S., La Cascia M., Sethi S., Taycher L.: Mix and Match Features in the ImageRover search engine. In Lew M.S. (ed.): Principles of Visual Information Retrieval. Springer-Verlag, London (2001) 219–258
Smeulders A.W.M., Worring M., Santini S., Gupta A., Jain R.: Content-based image retrieval at the end of the early years. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12) (2000) 1349–1380
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giacinto, G., Roli, F. (2003). Dissimilarity Representation of Images for Relevance Feedback in Content-Based Image Retrieval. In: Perner, P., Rosenfeld, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2003. Lecture Notes in Computer Science, vol 2734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45065-3_18
Download citation
DOI: https://doi.org/10.1007/3-540-45065-3_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40504-7
Online ISBN: 978-3-540-45065-8
eBook Packages: Springer Book Archive