Skip to main content

Efficient Algorithms for Disjoint Matchings among Intervals and Related Problems

  • Conference paper
  • First Online:
Discrete Mathematics and Theoretical Computer Science (DMTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2731))

Abstract

In this note, the problem of determining disjoint matchings in a set of intervals is investigated (two intervals can be matched if they are disjoint). Such problems find applications in schedules planning. First, we propose a new incremental algorithm to compute maximum disjoint matchings among intervals. We show that this algorithm runs in O(n) time if the intervals are given ordered in input. Additionally, a shorter algorithm is given for the case where the intervals are proper. Then, a NP-complete extension of this problem is considered: the perfect disjoint multidimensional matching problem among intervals. A sufficient condition is established for the existence of such a matching. The proof of this result yields a linear-time algorithm to compute it in this case. Besides, a greedy heuristic is shown to solve the problem in linear time for proper intervals.

The author works under contract with the firm Prologia-Groupe Air Liquide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Berge (1985). Graphs. Elsevier Science Publishers B.V., Amsterdam, 2nd edition.

    MATH  Google Scholar 

  2. M.C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs. Computer Science and Applied Mathematics. Academic Press, New-York.

    MATH  Google Scholar 

  3. P. Ramanan, J. Deogun, and C. Liu (1984). A personnel assignment problem. Journal of Algorithms 5, 132–144.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Steiner and J.S. Yeomans (1993). Level schedules for mixed-model, just-in-time processes. Management Science 39(6), 728–735.

    Article  MATH  Google Scholar 

  5. J. Edmonds (1965). Maximum matching and a polyedron with 0,1 vertices. Journal of Research of N.B.S. B 69, 125–130.

    MATH  MathSciNet  Google Scholar 

  6. S. Micali and V.V. Vazirani (1980). An \( O(\sqrt V E) \) algorithm for finding maximum matching in general graphs. In Proc. 21st Annual Symposium on Foundations of Computer Science, pages 17–27.

    Google Scholar 

  7. F.S. Roberts (1978). Graph Theory and its Applications to Problems of Society. SIAM, Philadelphia, PA.

    Google Scholar 

  8. M.G. Andrews and D.T. Lee (1992). An optimal algorithm for matching in interval graphs. manuscript.

    Google Scholar 

  9. M.G. Andrews, M.J. Atallah, D.Z. Chen, and D.T. Lee (2000). Parallel algorithms for maximum matching in complements of interval graphs and related problems. Algorithmica 26, 263–289.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Jàjà (1992). An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  11. M.R. Garey and J.S. Johnson (1979). Computer and Intractability: A Guide to NP-Completeness. W.H. Freeman.

    Google Scholar 

  12. H.L. Bodlaender and K. Jansen (1995). Restrictions of graph partition problems. Part I. Theoretical Computer Science 148, 93–109.

    Article  MATH  MathSciNet  Google Scholar 

  13. Bamboo-Planification by Prologia-Groupe Air Liquide. http://prologianet.univ-mrs.fr/bamboo/bamboo_planification.html

  14. U.I. Gupta, D.T. Lee, and J.Y.-T. Leung (1982). Efficient algorithms for interval and circular-arc graphs. Networks 12, 459–467.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Olariu (1991). An optimal greedy heuristic to color interval graphs. Information Processing Letters 37, 21–25.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Glover (1967). Maximum matchings in a convex bipartite graph. Naval Research Logistics Quartely 4(3), 313–316.

    Article  MathSciNet  Google Scholar 

  17. W. Lipski, Jr. and F.P. Preparata (1981). Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems. Acta Informatica 15, 329–346.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Gallo (1984). An O(n log n) algorithm for the convex bipartite matching problem. Operation Research Letters 3(1), 31–34.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.N. Gabow and R.E. Tarjan (1985). An linear-time algorithm for the special set union. Journal of Computer and System Sciences 30, 209–221.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Steiner and J.S. Yeomans (1996). A linear time algorithm for maximum matchings in convex, bipartite graphs. Computers and Mathematics with Applications 31(12), 91–96.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.A. Cook and R.A. Reckhow (1973). Time bounded random access machines. Journal of Computer and System Sciences 7, 354–375.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Habib, R. McConnel, C. Paul, and L. Viennot (2000). Lex-BSF and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234, 59–84.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.K. Kim (1989). Optimal parallel algorithms on sorted intervals. In Proc. 27th Annual Allerton Conference on Communication, Control and Computing, pages 766–775. Monticello, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gardi, F. (2003). Efficient Algorithms for Disjoint Matchings among Intervals and Related Problems. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds) Discrete Mathematics and Theoretical Computer Science. DMTCS 2003. Lecture Notes in Computer Science, vol 2731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45066-1_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45066-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40505-4

  • Online ISBN: 978-3-540-45066-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics