Skip to main content

Automatic Forcing and Genericity: On the Diagonalization Strength of Finite Automata

  • Conference paper
  • First Online:
Discrete Mathematics and Theoretical Computer Science (DMTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2731))

Abstract

Algorithmic and resource-bounded Baire category and corresponding genericity concepts introduced in computability theory and computational complexity theory, respectively, have become elegant and powerful tools in these settings. Here we introduce some new genericity notions based on extension functions computable by finite automata which are tailored for capturing diagonalizations over regular sets and functions. We show that the generic sets obtained either by the partial regular extension functions of any fixed constant length or by all total regular extension of constant length are just the sets with saturated (also called disjunctive) characteristic sequence α. Here a sequence α is saturated if every string occurs in α as a substring. We also show that these automatic generic sets are not regular but may be context free. Furthermore, we introduce stronger automatic genericity notions based on regular extension functions of nonconstant length and we show that the corresponding generic sets are bi-immune for the class of regular and context free languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies, Resource-bounded genericity, in: “Computability, Enumerability, Unsolvability”, London Math. Soc. Lect. Notes Series 224 (1996) 1–59, Cambridge University Press.

    Google Scholar 

  2. K. Ambos-Spies and E. Busse, Automatic forcing and genericity: on the diagonalization strength of finite automata, Forschungsbericht Mathematische Logik und Theoretische Informatik, Nr. 61, Universität Heidelberg, April 2003.

    Google Scholar 

  3. K. Ambos-Spies and J. Reimann, Effective Baire category concepts, in: Proc. 6th Asian Logic Conference, 13–29, World Scientific, 1998.

    Google Scholar 

  4. J.L. Balcazar and U. Schöning, Bi-immune sets for complexity classes, Mathematical Systems Theory 18 (1985) 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  5. C.S. Calude, Topological size of sets of partial recursive functions, Z. Math. Logik Grundlagen Math. 28 (1982) 455–462.

    Article  MATH  MathSciNet  Google Scholar 

  6. C.S. Calude, Relativized topological size of sets of partial recursive functions, Theor. Comput. Sci. 87 (1991) 347–352.

    Article  MATH  MathSciNet  Google Scholar 

  7. C.S. Calude and M. Zimand, Effective category and measure in abstract complexity theory, Theor. Comput. Sci. 154 (1996) 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.S. Calude, L. Priese, and L. Staiger, Disjunctive sequences: an overview, CDMTCS Research Report 63, October 1997.

    Google Scholar 

  9. S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1965) 325–245.

    MATH  MathSciNet  Google Scholar 

  10. S.A. Fenner, Notions of resource-bounded category and genericity, in: Proc. 6th Structure in Complexity Theory Conference, 196–212, IEEE Comput. Soc. Press, 1991.

    Google Scholar 

  11. S.A. Fenner, Resource-bounded Baire category: a stronger approach, in: Proc. 10th Structure in Complexity Theory Conference, 182–192, IEEE Comput. Soc. Press, 1995.

    Google Scholar 

  12. P. Hertling, Disjunctive ω-words and real numbers, J. UCS 2 (1996) 549–568.

    MathSciNet  Google Scholar 

  13. P.G. Hinman, Some applications of forcing to hierarchy problems in arithmetic, Z. Math. Logik Grundlagen Math. 15 (1969) 341–352.

    Article  MATH  MathSciNet  Google Scholar 

  14. C.G. Jockusch, Degrees of generic sets, in: Recursion Theory: its Generalisations and Applications, London Math. Soc. Lect. Notes Series 45 (1980) 110–139, Cambridge University Press.

    Google Scholar 

  15. C.G. Jockusch, Genericity for recursively enumerable sets, in: Proc. Recursion Theory Week 1984, Lect. Notes Math. 1141 (1985) 203–232, Springer-Verlag.

    Google Scholar 

  16. H. Jürgensen and G. Thierrin, Some structural properties of ω-languages, 13th Nat. School with Internat. Participation “Applications of Mathematics in Technology”, Sofia, 1988, 56–63.

    Google Scholar 

  17. J.H. Lutz, Category and measure in complexity classes, SIAM J. Comput. 19 (1990) 1100–1131.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.H. Lutz, The quantitative structure of exponential time, in: Proc. 8th Structure in Complexity Theory Conference, 158–175, IEEE Comput. Soc. Press, 1993.

    Google Scholar 

  19. E. Mayordomo, Almost every set in exponential time is P-bi-immune, Theor. Comput. Sci. 136 (1994) 487–506.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Mehlhorn, On the size of sets of computable functions, in: Proc. 14th IEEE Symp. on Switching and Automata Theory, 190–196, IEEE Comput. Soc. Press, 1973.

    Google Scholar 

  21. P. Odifreddi, Classical Recursion Theory, 1989, North-Holland.

    Google Scholar 

  22. J. C. Oxtoby, Measure and Category, 1980, Springer-Verlag.

    Google Scholar 

  23. L. Staiger, Reguläre Nullmengen. Elektron. Informationsverarb. Kybernetik EIK 12 (1976) 307–311.

    MathSciNet  MATH  Google Scholar 

  24. L. Staiger, Finite-state ω-languages, J. Comput. System. Sci. 27 (1983) 434–448.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Staiger, Rich ω-words and monadic second-order arithmetic, in: Computer Science Logic, 11th Int. Workshop, CSL’97, Lecture Notes Comput. Sci. 1414 (1997) 478–490, Springer-Verlag.

    Google Scholar 

  26. L. Staiger, How large is the set of disjunctive sequences, in: “Combinatorics, Computability, Logic”, Proceedings DMTCS 2001, 215–225, Springer-Verlag, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambos-Spies, K., Busse, E. (2003). Automatic Forcing and Genericity: On the Diagonalization Strength of Finite Automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds) Discrete Mathematics and Theoretical Computer Science. DMTCS 2003. Lecture Notes in Computer Science, vol 2731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45066-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45066-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40505-4

  • Online ISBN: 978-3-540-45066-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics