Abstract
We propose a simple algorithm to generate all caterpillars without repetition. Also some other generation algorithms are presented. Our algorithm generates each caterpillar in a constant time per caterpillar.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beyer, T. and Hedetiniemi, S. M., Constant Time Generation of Rooted Trees, SIAM J. Comput., 9 (1980) 706–712.
Biggs, N. L., Lloyd, E. K., Willson, R. J., Graph Theory 1736—1936, Clarendon Press, Oxford (1976).
Chauve, C., Dulucq, S. and Rechnitzer, A., Enumerating Alternating Trees, Journal of Combinatorial Theory, Series A, 94 (2001) 142–151.
Chung, K.-L. and Yan, W.-M., On the Number of Spanning Trees of a Multi-Complete/Star Related Graph, Information Processing Letters, 76 (2000) 113–119.
Harary, F. and Schwenk, A. J., The Number of Caterpillars, Discrete Mathematics, 6 (1973) 359–365.
Hasunuma, T. and Shibata, Y., Counting Small Cycles in Generalized de Bruijn Digraphs, Networks, 29 (1997) 39–47.
Li, Z. and Nakano, S., Efficient Generation of Plane Triangulations without Repetitions, Proc. of ICALP 2001, Lecture Notes in Comp. Sci., 2079, (2001) 433–443.
Lonc, Z., Parol, K. and Wojciechowski, J. M., On the Number of Spanning Trees in Directed Circulant Graphs, Networks, 37 (2001) 129–133.
Nakano, S., Efficient Generation of Plane Trees, Information Processing Letters, 84 (2002) 167–172.
Simone, C. D., Lucertini, M., Pallottino, S. and Simeone, B., Fair Dissections of Spiders, Worms, and Caterpillars, Networks, 20 (1990) 323–344.
West, D. B., Introduction to Graph Theory, Second Ed., Prentice Hall, NJ (2001)
Wright, R. A., Richmond, B., Odlyzko, A. and Mckay, B. D., Constant Time Generation of Free Tree, SIAM J. Comput., 15 (1986) 540–548.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kikuchi, Y., Tanaka, H., Nakano, Si., Shibata, Y. (2003). How to Obtain the Complete List of Caterpillars. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_34
Download citation
DOI: https://doi.org/10.1007/3-540-45071-8_34
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40534-4
Online ISBN: 978-3-540-45071-9
eBook Packages: Springer Book Archive