Skip to main content

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations

Extended Abstract

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2759))

Included in the following conference series:

Abstract

The linear reachability problem is to decide whether there is an execution path in a given finite state transition system such that the counts of labels on the path satisfy a given linear constraint. Using results on minimal solutions (in nonnegative integers) for linear Diophantine systems, we obtain new complexity results for the problem, as well as for other linear counting problems of finite state transition systems and timed automata. In contrast to previously known results, the complexity bounds obtained in this paper are polynomial in the size of the transition system in consideration, when the linear constraint is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, April 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–204, January 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In TACAS’99, volume 1579 of LNCS, pages 193–207. Springer-Verlag, 1999.

    Google Scholar 

  4. I. Borosh, M. Flahive, and B. Treybig. Small solutions of linear diophantine equations. Discrete Mathematics, 58:215–220, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Borosh and B. Treybig. Bounds on positive integral solutions of linear diophantine equations. Proceedings of the American Mathematical Society, 55:299–304, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular properties for nonregular processes. In LICS’95, pages 123–133. IEEE CS Press, 1995.

    Google Scholar 

  7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. TOPLAS, 8(2):244–263, 1986.

    Article  MATH  Google Scholar 

  8. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In CONCUR’99, volume 1664 of LNCS, pages 242–257. Springer, 1999.

    Google Scholar 

  9. Zhe Dang. Binary reachability analysis of pushdown timed automata with dense clocks. In CAV’01, volume 2102 of LNCS, pages 506–517. Springer, 2001.

    Google Scholar 

  10. Zhe Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability analysis of discrete pushdown timed automata. In CAV’00, volume 1855 of LNCS, pages 69–84. Springer, 2000.

    Google Scholar 

  11. Zhe Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-bounded Multicounter Machines with a Free Counter. In FSTTCS’01, volume 2245 of LNCS, pages 132–143. Springer, 2001.

    Google Scholar 

  12. Zhe Dang, P. San Pietro, and R. A. Kemmerer. On Presburger Liveness of Discrete Timed Automata. In STACS’01, volume 2010 of LNCS, pages 132–143. Springer, 2001.

    Google Scholar 

  13. E. Domenjoud. Solving systems of linear diophantine equations: an algebraic approach. In MFCS’91, volume 520 of LNCS, pages 141–150. Springer-Verlag, 1991.

    Google Scholar 

  14. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications for finite-state verification. In ICSE’99, pages 411–421. ACM Press, 1999.

    Google Scholar 

  15. G. J. Holzmann. The model checker SPIN. TSE, 23(5):279–295, May 1997.

    MathSciNet  Google Scholar 

  16. J. Hopcroft and J. Ullman. Introduction to Automata theory, Languages, and Computation. Addison-Wesley Publishing Company, 1979.

    Google Scholar 

  17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts, 1993.

    MATH  Google Scholar 

  18. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, 1989.

    Article  Google Scholar 

  19. R. Parikh. On context-free languages. JACM, 13:570–581, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE CS Press, 1977.

    Google Scholar 

  21. L. Pottier. Minimal solutions of linear diophantine equations: Bounds and algorithms. In Rewriting Techniques and Applications, volume 488 of LNCS, pages 162–173. Springer-Verlag, 1991.

    Google Scholar 

  22. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification (preliminary report). In LICS’86, pages 332–344. IEEE CS Press, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, G., Li, C., Dang, Z. (2003). New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations. In: Ibarra, O.H., Dang, Z. (eds) Implementation and Application of Automata. CIAA 2003. Lecture Notes in Computer Science, vol 2759. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45089-0_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45089-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40561-0

  • Online ISBN: 978-3-540-45089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics