
Implementation of the USB Token System
for Fingerprint Verification

Daesung Moon, Youn Hee Gil, Sung Bum Pan, and Yongwha Chung

Biometrics Technology Research Team, ETRI, Daejeon, Korea
{daesung, yhgil, sbpan, ywchung}@etri.re.kr

Abstract. In the modern electronic world, the authentication of a person is an
important task in many areas of day-to-day. Using biometrics to authenticate a
person’s identity has several advantages over the present practices of Personal
Identification Numbers (PINs) and passwords. To gain maximum security in the
verification system using biometrics, the computation of the verification as well
as the store of the biometric pattern has to take place in the security token(e.g.,
smart card, USB token). However, there is an open issue of integrating biomet-
rics into the security token because of its limited resources(processing power
and memory space). In this paper, we describe our implementation of the USB
token system having 206MHz StrongARM CPU, 16MBytes Flash memory,
and 1MBytes RAM. Also, we describe a fingerprint verification algorithm that
can be executed in the restricted environments. To meet the memory space
specification and processing power of the security token, in fingerprint verifica-
tion algorithm, we develop a data structure, called a multi-resolution
accumulator array. Based on experimental results, we confirmed that the RAM
requirement of the proposed algorithm is about 16 KBytes, and the Equal Error
Rate(EER) is 1.7%. Therefore, our fingerprint verification algorithm can be exe-
cuted in real-time on the developed USB token without degrading accuracy.

1 Introduction

In the modern electronic world, the authentication of a person is an important task in
many areas of day-to-day life such as E-commerce and E-business. Using biometrics to
authenticate a person’s identity has several advantages over the present pra ctices of
Personal Identification Numbers (PINs) and passwords [1-7].

In typical biometric verification systems, the biometric patterns are often stored in a
central database. With the central storage of the biometric pattern, there are open
issues of misuse of the biometric pattern such as the “Big Brother” problem. To solve
these open issues, the database can be decentralized into millions of security token
such as smart card, USB token[8-10]. USB token is technologically identical to smart
cards, with the exception of the interface to the computer. The smart card requires an
additional card reader, whereas the USB token having about the size of a house key,

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 998−1005, 2003.
 Springer-Verlag Berlin Heidelberg 2003

shown in Fig. 1., is designed to interface with the universal standard bus (USB) ports
found on millions of computers and peripheral devices.

Fig. 1. The example of the USB token

Most of the current implementations of USB token using biometrics have a common
characteristic that the biometric verification process is solely accomplished out of the
USB token. This system is called Store-on-Token because USB token is used only as a
storage device to store the biometric pattern. For example, in a fingerprint-based Store-
on-Token, the fingerprint pattern stored in USB token needs to be insecurely released
into a host PC to be compared with an input fingerprint pattern.

To heighten the security level, the verification operation needs to be performed by
in- USB token processor, not the host PC. This system is called Match-on-Token be-
cause the verification operation is executed on USB token. Note that standard PCs on
which typical biometric verification systems have been executed have 1GHz CPU and
128MBytes memory. On the contrary, the system specification of the USB token that
we have developed is 206MHz CPU, 16MBytes Flash memory, and 1MBytes RAM.
Therefore, the typical biometric verification algorithms may not be executed on the
USB token successfully.

The fingerprint is chosen as the biometrics for verification in this paper. In this paper,
we present a minutiae-based fingerprint verification algorithm for the Match-on-Token
system that can be executed in real-time on the resource-constrained environments. To
meet the processing power and memory space specification of the USB token, we
develop a data structure, called a multi-resolution accumulator array, with which the
equal amount of memory space is required at each resolution. Based on the experimen-
tal results, we confirmed that the memory requirement of the proposed algorithm is
about 16KBytes, and the Equal Error Rate(EER) is 1.7%.

The rest of the paper is structured as follows. Section 2 explains structural elements
and system specification of our USB token, and Section 3 describes the proposed a
fingerprint matching algorithm. The experimental results are given in Section 4. Finally,
conclusions are given in Section 5.

2 Match-on-Token

The fingerprint verification system can divide into three parts. Image Pre-Processing,
Minutiae Extraction and Minutiae Matching. To assign the verification steps to the
USB token or the host PC, we evaluate first the resource requirements of each step. Gil
et al.[10] reported that the Pre-processing and Extraction steps cannot be executed on

999Implementation of the USB Token System for Fingerprint Verification

the resource-constrained environments such as USB token. Thus, we determined the
Minutiae Matching step is executed on the USB token. Especially, the Minutiae
Matching step is most important for the security.

Enrolled
Fingerprint

PRE-
PROCESSING

Enrollment

PRE-
PROCESSING

Verification

Yes
No EXTRACTION

EXTRACTION

MATCH

USB security token

STORE

Host PC

Input
Fingerprint

Enrolled
Minutiae

Input
Minutiae

Fig. 2. Fingerprint-based Match-on-Token

Note that the Minutiae Matching step(alignment and matching stages) to compute
the similarity between the enrolled minutiae and the input minutiae is executed on the
Match-on-Token, whereas the Image Pre-Processing and Minutiae Extraction steps are
executed on the host PC. Fig. 2. shows a fingerprint-based Match-on-Token system. In
the off-line enrollment phase, an enrolled fingerprint image is preprocessed, and the
minutiae are extracted and stored. In the on-line verification phase, the minutiae ex-
tracted from an input fingerprint are transferred to the USB token. Then, the similarity
between the enrolled minutiae and the input minutiae is examined in the USB token.

Table 1. System Specification of the USB token

CPU 32-bit RISC Processor (StrongARM, 206MHz)

Flash Memory 16 Mbyte

RAM 1 Mbyte

Physical Size 7cm×2cm×1cm

Table 1 shows the system specification of the USB token we developed. The USB

token employs 206MHz CPU, 16MBytes Flash memory, and 1MBytes RAM. The size
of the USB token is 7cm×2cm×1cm. The reason that we adopt the powerful Stron-
gARM processor[11] is to execute many other applications in real-time such as
speaker verification, face verification, and PKI, in addition to fingerprint verification.
Though there is sufficient memory space in our USB token, the RAM space available
to the fingerprint verification is less than 50KBytes. This is because the 1MBytes
RAM memory should be used by Linux Kernel version Embedded Linux 2.4.
(717Kbytes) and other applications.

Fig. 3. shows the hardware architecture of the USB token. The processing core of
The Intel SA-1110 processor includes the USB end-point interface to communicate
between the host PC and the token. Also, the USB token employs the serial port and
JATG interface to use in debugging.

1000 D. Moon et al.

Fig. 3. Architecture of the USB token

3 Fingerprint Verification Algorithm for Match-on-Token

In general, the fingerprint verification system consists of three stages that are the
fingerprint image pre-processing, minutiae extraction and minutiae matching. In this
paper, we focus on the minutiae matching stage. Fingerprint minutiae extracted from
the PC have three members as below,

(1) x and y coordinate of the minutia point
(2) orientation (θ)
(3) type of the minutia point (e.g., ridge ending or ridge bifurcation)

The fingerprint matching stage is composed of two phases: minutiae alignment and

point matching. In general, the stored template and the input minutiae cannot be com-
pared directly because of random noise or deformations. The minutiae alignment phase
computes the shift and rotation parameters in order to align the two fingerprints. Then,
the point matching phase counts the overlapping minutia pairs in the aligned finger-
prints. Typically, the minutiae alignment phase requires a lot of memory space and
execution time than the point matching phase.

Our alignment algorithm employs an accumulator array in order to compute the shift
and rotation parameters[12]. When the two fingerprints are from the same fingerprint,
The input to the alignment phase consists of two sets of minutiae points P and Q
extracted from fingerprint images[5].

We assume that the second fingerprint image can be obtained by applying a similar-
ity transformation (rotation and translation) to the first image. The second point set Q
is then a rotated and translated version of the set P, where points may be shifted by a
random noise, some points may be added and some points deleted. The task of finger-
print alignment is to recover this unknown transformation. Since we do not know
whether the two fingerprints are the same or not, we try to find the best transformation
in the sense.

1001Implementation of the USB Token System for Fingerprint Verification

We discretize the set of all possible transformations, and the matching score is com-
puted for each transformation. The transformation having the maximal matching score
is believed to be the correct one. Let’s consider a transformation,







∆
∆

+











−

=





∆∆

y

x

y

x

y

x
F yx θθ

θθ
θ cossin

sincos
,,

 (1)

where θ and (yx ∆∆ ,) are the rotation and translation parameters, respectively. The

space of transformation consists of (θ , yx ∆∆ ,), where each parameter is discretized

into a finite set of values :
{ }Lθθθ ,...1∈ , { }Mxxx ∆∆∈∆ ,...1

, and { }Nyyy ∆∆∈∆ ,...1
,

where L, M and N are the allowable parameters.
Matching scores for the transformations are collected in the accumulator array A,

where the entry A(l,m,n) counts the evidence for the transformation
yxF ∆∆ ,,θ

. For each

pair (p,q), where p is a point in the set P and q is a point in the set Q, we find all possi-
ble transformations that map p to q. Then, is incremented the evidence for these trans-
formations in the array A.

In this straightforward implementation of the accumulator array A, the requirement
memory size is O(LMN). If the numbers of L, M and N are 64, 128 and 128, respectively,
the memory size of accumulator array A is 1,048,576 bytes. It can not be executed on
the Match-on-Card or Security Token. Therefore, we develop a fingerprint matching
algorithm using a multi-resolution accumulator array as shown in Fig. 4.

Fig. 4. Computation Flow of our Fingerprint Verification Algorithm

In the first level with the coarse resolution, considering search range Y and unit size
y, find the maximum bin(�) of the accumulator array is found, that is approximate
alignment parameter. To obtain more exact alignment parameter using the same mem-

1002 D. Moon et al.

ory space, our algorithm iterates the same process with the finer resolution than the
first level with search range Y/2 and unit size y/2 around the positions found in the
first level. Finally, in the third level with the finest resolution, search range Y/4 and unit
size y/4, the exact alignment parameter is found.

We can align two fingerprints by selecting the reference minutia pair and getting the
difference (θddydx ,,) of the selected minutia pair. The notation of θddydx ,, means

the difference of the minutia pair, i.e., (
111 ,, θyx) and (

222 ,, θyx). However, it is difficult

to select the reference minutiae pair because fingerprints tend to be deformed irregu-
larly. Therefore, all of the possible minutia pairs of two fingerprints have to be consid-
ered. The corresponding minutia pairs usually have the similar difference, and this
difference can be used as the shift and rotation parameters in order to align the two
fingerprints. The accumulator array A is used to find the difference. After computing
the difference (θddydx ,,) for the minutia pair, each of the entry of array A(θddydx ,,)

is increased. At the end of the accumulating processing, the array index with the maxi-
mum value is selected as the shift and rotation parameters.

Note that the requirement of memory space of the proposed algorithm is the same at
each level. For example, In level 3, the required memory space is 16,384B,
((64/ 132 −)*(128/ 132 −)*(128/ 132 −)). Also, in level 2 and 1, our algorithm uses 16,384B,
((32/ 122 −)*(64/ 122 −)*(64/ 122 −)) and ((16/ 112 −)*(32/ 112 −)*(32/ 112 −)). On the contrary,
the memory space of the straightforward implementation requires 1,048,576B. More-
over, the accuracy of our fingerprint verification algorithm is similar to the typical algo-
rithm, because our algorithm takes the unit size 1 in last level.

4 Evaluation of Prototype System

Fig. 5. shows the system environments of our USB token. The input fingerprint im-
age is captured from the fingerprint sensor, and then input minutiae are extracted from
input fingerprint image in the host PC. The minutiae extracted from an input fingerprint
image are transferred to the USB token. Then, the similarity between the enrolled minu-
tiae that stored in the USB token and the input minutiae is examined in the USB token.
Finally, the verification result is transfer again red back to host PC.

Fig. 5. Configuration of the security token system

We have tested our fingerprint verification algorithm on the fingerprint images cap-
tured with an optical scanner manufactured by SecuGen[13], which has resolution of

Host PC

USB Cable

Fingerprint
Sensor

USB SecurityToken

1003Implementation of the USB Token System for Fingerprint Verification

500dpi. The size of captured fingerprint images was 248×292. The image set is com-
posed of four fingerprint images per one finger from 100 individuals for a total of 400
fingerprint images. When these images were captured, no restrictions on the spatial
position and direction of fingers were imposed. Also, the captured fingerprint images
vary in quality.

As shown in the Table 2, the required working memory space of the proposed algo-
rithm is about 16KBytes, and the total number of instruction is about 80MBytes. Thus,
it is executable in real-time on the USB token. The straightforward implementation
requires about 300KBytes RAM and 20Mbytes instruction, respectively. Also, the
EER(Equal Error Rate) of the proposed algorithm was almost equal to that of the
straightforward algorithm(e.g., 1.7%).

Table 2. The Performance Analysis

 Total No of Instructions Required Memory Space

Straightforward Algorithm 20M About 300 KB

Proposed Algorithm 80M About 16 KB

5 Conclusions

 USB token is a model of very secure device, and the biometrics is the promising
technology for verification. These two can be combined for many applications to en-
hance both the security and the convenience. However, typical biometric verification
algorithms that have been executed on standard PCs may not be executed in real-time
on the resource-constrained environments such as USB token.

In this paper, we have presented a memory-efficient fingerprint verification algorithm
that can be executed in real-time on the USB token. To reduce the memory requirement,
we employ a small-sized accumulator array. Then, to compute the alignment parameters
more accurately, we perform more computations at from a coarse-grain to a fine-grain
resolution on the accumulator array. Currently, we are porting memory-efficient
speaker and face verification algorithms to the USB token for multi-modal verification.

References

[1] A. Jain, R. Bole, and S. Panakanti,: Biometrics: Personal Identification in Networked Society,
Kluwer Academic Publishers, (1999)

[2] L. Jain, et al.,: Intelligent Biometric Techniques in Fingerprint and Face Recognition, CRC
Press, (1999)

[3] F. Gamble, L. Frye, and D. Grieser,: Real-time Fingerprint Verification System, Applied
Optics, Vol. 31, No. 5, pp. 652-655, (1992)

[4] A. Jain, L. Hong, and R. Bolle,: On-line Fingerprint Verification, IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol.19, No.4, pp.302-313, (1997)

1004 D. Moon et al.

[5] N. Ratha, K. Karu, and A. Jain,: A Real-Time Matching System for Large Fingerprint Data-
bases, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, Au-
gust (1996)

[6] S. Lim, and K. Lee, : Efficient Iris Recognition through Improvement of Feature Vector and
Classifier. ETRI Journal, Vol. 23, No. 2, (2001)

[7] S. Im, et. al.,: A Direction Based Vascular Pattern Extraction Algorithm for Hand Vascular
Pattern Verification , ETRI Journal, Vol. 25, No. 2, (2003)

[8] Kingpin,: Attacks on and Countermeasures for USB Hardware Token Devices, Proceedings
of the Fifth Nordic Workshop on Secure IT Systems Encouraging Co-operation, Reykjavik,
Iceland, pp 35-57, October 12-13. (2000)

[9] M. Janke, FingerCard Project Presentation, http://www.finger-card.org, (2001)
[10] Y. Gil, et. al.,: Performance Analysis of Smart Card-based Fingerprint Recognition for

Secure User Authentication, in Proc. of IFIP on E-commerce, E-business, E-government, pp.
87-96, (2001)

[11] Intel, http://www.intel.com.
[12] S. Pan, et. al.,: A Memory-Efficient Fingerprint Verification Algorithm using A Multi-

Resolution Accumulator Array, ETRI Journal, Vol. 25, No. 3, To be published, June (2003)
[13] SecuGen, http://www.secugen.com.

1005Implementation of the USB Token System for Fingerprint Verification

	1 Introduction
	2 Match-on-Token
	3 Fingerprint Verification Algorithm for Match-on-Token
	4 Evaluation of Prototype System
	5 Conclusions

