Tracking the Pose of Objects through Subspace

Simon Léonard and Martin Jigersand

University of Alberta, Edmonton AB, Canada
sleonard, jag@cs.ualberta.ca

Abstract. Tracking the pose of an object is a fundamental operation in
computer vision. Yet, achieving this task for arbitrary objects without re-
quiring a priori knowledge remains a major stumbling block. This paper
introduces a method for tracking the pose of a moving object without re-
quiring its 3D model or textured surfaces. In the first step, a sequence of
images-poses pairs is obtained and PCA coefficients are derived from the
image sequence. Then, a piecewise linear observation mapping is build
between the poses and the PCA coefficients. The mapping is then used
in the observation model of a Kalman filter that tracks the pose of the
object.

1 Introduction

Over the years, there has been many methods that successfully used 2D tracking
to recover the 3D pose [10]. One drawback of such methods lies in the robust-
ness of the 2D tracking. In order to track 2D patches in a sequence of images
each patch must be discriminating enough, which is a characteristic offered by
textured surfaces. However, for objects without salient features (low textured
surfaces) these methods become unreliable.

When tracking an object fails because of the lack of small visual attributes,
one can often resort to the overall look of the object. Such “look” can be provided
from various sources such as a 3D CAD model [6] or based on typical 2D views
[8,1].

The present introduces a method for tracking the pose of an object by using
an imaged based representation. The representation is obtained by representing
different views of the object in a low dimensional subspace. Such a procedure
is known as principal component analysis (PCA). Also, during the data acquisi-
tion, the actual state of the object (3D pose) is recorded by a magnetic tracker
apparatus, such that a coefficients-state pair is obtained for each view.

It has been shown that under varying points of view, the PCA coefficients
vary on a smooth manifold [7,8]. Therefore, similar views will have similar de-
compositions in the subspace. Furthermore, this implies that the set of coeffi-
cients of all views can be clustered into subsets representing similar views. By
assuming local linearity, a linear mapping between coefficients and states can be
obtained for each subset. Finally, these mappings are used in a Kalman filter
that is modified to accommodate all the different observation models.

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 371-378, 2003.
© Springer-Verlag Berlin Heidelberg 2003

372 S.Léonard and M. Jagersand
2 Previous Work

Subspace methods have been widely used in computer vision. In motion analysis,
it is often used to constraint measurements such as optical flow [2] or motion
[10] into a low dimensional subspace. As mentioned above, these methods often
suffer from the ambiguity of the 2D correspondence.

Subspace methods were also used for object recognition [8] and for face recog-
nition [11]. They also accounted for possible translations of the target object or
face. These recognition systems have also inspired many tracking methods such
as the one presented in [1]. The tracking is performed by robustly matching
an input image to an image of the training sequence. The motion is recovered
by introducing parameterized motion and simultaneously minimizing a robust
objective function over both a set of motion parameter and PCA coefficients.
That is, it searches for the PCA coefficients that represent a warping of an image
region. In this method, the subspace is only used for encoding image regions and
there is no process that is carried within the subspace.

Another method was proposed in [8], where tracking is achieved by decom-
posing the input image in the subspace and then finding the closest known view
(with Ly norm) in the subspace. The method assumes that consecutive views
are strongly correlated and hence their decomposition in the subspace repre-
sent a continuous function. This method is akin to object recognition, were the
similarity between two views is reflected by similarity in the subspace.

It is important to note that these methods lack the concept of dynamic
systems, that is time and state varying models are not taken into consideration.
Yet, dynamic system have played an increasing role in computer vision especially
in tracking.

An analogous, but inverse application was demonstrated in [3]. Instead of
estimating the state of an object given a view, it estimates the view given a state.
First the coefficients are obtained by approximating the function that maps the
state to the subspace. Then, the coefficients are projected on the subspace basis
and the estimate of the image is obtained. The present paper aims at exactly the
inverse. That is, to track the state given changes in the observation manifold.
Moreover, it integrates a Kalman filter to account for the dynamics of the system,
with the particularity that the tracking is performed in the subspace.

3 Subspace Representation

In a dynamic system framework, let a p x ¢ image be represented by a pg x 1
column vector I and let E : ®P¢ — R where k < pg such that z = E(I).
Furthermore, let x be the d-dimensional state of the object (i.e. pose) and let
H : ®? — R* such that the observation function is given by z = H (x). Therefore,
by finding the two functions F and H, it is possible to relate the state x of an
object to its view I. This section shows how to derive the function E from a set
of training images, while the next section deals with H.

Let Ih,...,I) be a set of training images representing M points in RP?. The
goal of principal component analysis it to reduce the dimensionality of the set

Tracking the Pose of Objects through Subspace 373

while preserving as much as possible of the variation inherent to the set. These
principal components are defined in terms of eigenvectors of a covariance matrix
and are sorted in decreasing order such that the first ones capture most of the
variation of the data set [4].

The usual and efficient way of creating the subspace was made popular by
[11]. First the average image is computed by I = 2%21 I,,/M. Then, for each
image I,,, calculate its deviation from the mean by AI,, = I, — I and put
the result in a matrix A = [AI; AI,--- AIps]. The principal components are
given by the eigenvectors of the covariance matrix C = AAT. However, the size
of C (pg x pq) is impractical. For computational efficiency, the eigenvectors of
L = AT A are instead computed and denoted by V = [vi...va]. Then, the
first k eigenvectors of the subspace are given by normalizing the columns of
U=A[vy...vg]for k< M.

Finally, the coefficients z of an image I are obtained from

z=EI)=UT(1-1) (1)

4 QObservation Model

As described in the previous section, the other step is to find a function H(x) that
maps the state to the subspace. Before going any further it is important to look
ahead and see what kind of function is sought. First, there is little indication on
the shape of the function H and without very good insight it would be unwise
to commit to any. As mentionned in [7], H is smooth and thus a reasonable
assumption is that H is locally linear, that is a small variation in the state x
will cause a small variation in z. Such an assumption is the foundation of the
methods presented in [3, 8].

Given that H is locally linear, the next step is to look at how to incorporate
this in a mathematical tracking framework like Kalman filtering. The standard
Kalman filtering requires a globally linear observation function, which H is not.
The extended Kalman filter accommodates non linear functions by using the
Jacobian of the partial derivatives H, hence using local linearity. Unfortunately,
to compute the Jacobian H, the function H must be know, which is not the case
here.

Instead, a standard Kalman filter can be used with a set of linear observation
functions 8 = {Hy, H»,...,Hny} where H; and H; (i # j) represent observation
functions over mutually exclusive intervals of the domain of x. This can be
understood as covering the state space ®? with piecewise linear functions, where
each function represent how certain views of the object are related to certain
observations.

To achieve this, the subspace must be either tessellated or clustered. Because
the observation functions must be build with the available data (measured states
and coeflicients) and there is no way to ensure that enough points are present in
each cell of a tessellation to build reliable functions, the Linde-Buzo-Gray (LBG)
vector quantization [5] is used instead for clustering.

374 S. Léonard and M. Jigersand

4.1 Vector Quantization

Given a set of points Z = {zi,...,2zy} with z,, € RF, a set of codevectors
(or codebook) € = {cy,...,cy} with ¢, € R* and a function K(z,,) = c,
that assigns a codevector to each point, the LBG algorithm divides the space
by calculating € and K in such a way that it minimizes the average distortion
between each point and its codevector, that is

1 M
Dyye = M—k‘ mz_l ||zm - I((Zm)”2

The recursive algorithm starts with one codevector € = {¢;} that is set to
the average of all the points (all points are assigned to ¢1). Then, ¢; is split into
two codevectors {ci,c2} by adding a small variation to create ¢; = (1 + €)cy
and ¢; = (1 — €)cy. The next step consists of adjusting K(z,,) such that each
point is assigned to the closest codevector. Then, each codevector is recomputed
according to the average of all the points associated to each of them. Finally,
the recursion takes place and each codevector is split in two.

Given a codebook and K(z,,), the next step is to determine the linear obser-
vation functions that represent all the members of each codevector. This requires
the pairs p;, = (Zm,Xm) where z,, are the coefficients representing the mth im-
age and x,, is the respective state of the object.

For the pairs pi,...,ps associated with the codevector c; the correspond-
ing linear observation function is obtained by solving the following system of
equations for H;.

(20 - 2p] = Hi[x1 - %] 2)

In order to have reliable observation functions, the choice of the number
of training frames, codevectors and the dimensionality of the state must be
considered. For example, by assuming that the dimensionality of the tracked
pose is six, equation 2 can be written as

z] x{
— [hl hk] (3)

T T

Zy Xy

where z € ®F and h; € R°. It should be noted that in order to have an
overdetermined system f must be greater than 6. Therefore, each codevector
should have at least six points assigned to it. However, since there is very little
control on how to distribute the data set with the LBG algorithm, a practical
way to avoid underdetermined systems is to use more training images. If, as in
the following experiments, the codebook contains 128 codevectors, the minimum
number of training images would be 128 x 6 = 768, such that experiences had
us set 1024 as a safe number of training images.

Tracking the Pose of Objects through Subspace 375
5 Kalman Filtering

Setting up the Kalman filter requires to create a dynamic function and observa-
tion function [12].

The dynamic function of the pose of an arbitrary object, i.e. kinematic chain
like an arm, is not linear. Therefore, a first order differential dynamic model is
used instead of a linear model. That is, using dx; = X; —X;_1 (where X represent
an a posteriori estimate), the a priori estimate at time ¢ + 1 becomes x;trl =
%X; + 0x;. Incidentally, the process noise covariance matrix () can be tailored to
reflect the uncertainty due to the magnitude of the motion by Q;11 = dx;0%7 .

The other required modification is that once the observation z; is available,
the appropriate observation function H, must be used. The selection is simply
done by choosing the closest codevector c}; and selecting the function H,, asso-
ciated with it. The cost of performing the exhaustive search is negligible for the
size (N) of the codebook used in the experiments.

To summarize, the system can be divided in two parts the training part and
the tracking part.

5.1 Training

Acquire M images I,, and M corresponding states x,.

Find the k first eigenvectors of A.

For each I,, compute z,, with equation 1.

Clustering of the coefficients z,, (find the codebook € of N codevectors).
For each codevector c,, build an observation function H, using equation 3.

Uk o=

5.2 Tracking

Find the coefficients z; of the current frame with equation 1.

Find the nearest codevector cj to z;.

Time update: find the a priori estimate x;r and error covariance Pz-Jr
Measurement update: using Hj, find the a posteriori estimates X; and error
covariance P;.

Ll

6 Experiments

The state measurements x; were obtained with a Polhemus Ultratrak Pro and
were sampled at the same rate than the images. The images size is 160x120.
The online tracking at 30 fps runs easily on a 1.5GHz laptop with 256 MB, while
computing the subspace on 1024 frames takes about 10 minutes to compute.
The camera is an off the shelf IEEE1394 webcam. In both experiments, the size
of the codebook was 128, therefore there was 128 observation models to chose
from.

Two experiments were conducted. The first one involves a human circling
around a center and the second one is a moving arm. Both experiments used a

376 S. Léonard and M. Jigersand

6D state space. In the first experiment, one sensor was place on the chest and the
state was composed of [z,v, 2, yaw, pitch,roll]’ and in the second experiment
one sensor (S1) was placed above the elbow and one sensor (S2) was placed at
the wrist and the state was [Zs,,Ys,,25,, TSy, YS,,25,]" - In both experiments,
measurements from the Polhemus were also used as a reference for comparing
the estimated states.

Whereas the motion in the first experiment was periodic (a person walking
around), this was not the case in the second experiment where the motion was
improvised and relatively fast. A few samples of frames are shown in figure 1
and 2. The sequences are available at www.cs.ualberta.ca/~sleonard/track

Figure 3 shows the tracking results for the arm sequence. The number of
training images was 1024 and the number of eigenvectors used was 6 (z € R°).
The left image shows the Eucledian error for the elbow and the right image shows
the results for the fist. On average, the error was about 11cm for the elbow and
14cm for the fist. The randomness of the error reflects well the uncorrelated and
fast motion of the arm.

Figure 4 shows the errors obtained for the circling sequence. The top left
image shows the error in position (z,y,2), while the three other images show
the error in orientation. The trajectory was on a circle of about 1.2m of diameter.
The number of training images was 1024 and the number of eigenvectors used
was 4. The shape of the curves clearly reveal the periodicity of the motion. They
indicate that the system was less accurate when the subject was moving closer
to the camera and magnetic tracker transmitter. At those points is shows that
the yaw is off by 15 degrees compared to the Polhemus. Part of the error in
orientation can be attributed to the lack of calibration for roll, pitch and yaw
of the sensors in our facility. However, the sensors were properly calibrated for
position (z,y, z) measurements.

7 Conclusion

This paper has introduced a method for tracking the pose of objects without
relying on textured surfaces and salient features. Instead, it uses an image based
representation of the overall appearance of the object. This representation has
the form of a low dimensional subspace and is obtained from PCA. Using the
result that similar views will have a similar representations in the subspace allows
to use a set of linear functions to approximate the mapping between the image
space and the subspace. These mappings are then included in a Kalman filtering
and they account for the observation model of the system.

The results have shown that the system tracks the pose of the object and
is accurate enough for many applications, especially in virtual reality. The goal
was to show through the experiments how tracking the pose of the human body
could be used for applications such as rendering a virtual environment (i.e. in a
head mounted display) according to the position of the body or simple virtual
arm manipulations.

Tracking the Pose of Objects through Subspace 377

References

1.

2.

8.

9.

Black, M.J., Jepson, A.D.: EigenTracking: robust matching and tracking of articu-
lated objects using a view-based representation. IJCV 25 (1998) 63-84

Irani, M.: Multi-frame optical flow estimation using subspace constraints. ICCV
(1999) 626—633

Jagersand, M.: Image based view synthesis of articulated agents. CVPR (1997)
1047-1053

Jolliffe, I.T.: Principal Component Analysis Springer, New York, (2002)

Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE
Transactions on Communications (1980) 702-710

Lowe, D.G.: Fitting parameterized three-dimensional models to images. PAMI 13
(1991) 441-450

Murase, H., Nayar, S.K.: Visual learning and recognition of 3D objects from ap-
pearance. IJCV 14 (1995) 524

Nayar, S.K., Nene, S.A., Murase, H.: Subspace methods for robot vision. RA 12
(1996) 750-758

Shi, J., Tomasi, C.: Good features to track. CVPR (1994) 593-600

10. Toma51 C., Kanade T.: Shape and motion from image streams under orthography:
a factorlzatlon method. IJCV 9 (1992) 137-154

11. Turk, M., Pentland, A.P.: Eigenfaces for recognition. CogNeuro 3 (1991) 71-96
12. Welch, G., Bishop, G.: An introduction to the Kalman filter SIGGRAPH (2001)
short course

Fig. 1. Sample images (arm sequence).

Fig. 2. Sample images (circle sequence).

378 S.Léonard and M. Jagersand

ELBOW (EUCLEDIAN) FIST (EUCLEDIAN)
T T

T T T T 25 T T T T
1w]
1%]
$
§ §
3 3
: :
@ 13 10 4
B 5 4
00 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Frames Frames
Fig. 3. Arm sequence (relative error).
CIRCLE (EUCLEDIAN) CIRCLE (yaw)
25 T T T T T T T T T T

Eucledian error (cm
i~ oy s
a s & 5
. . . .
Error (degree)
~ IS > ® 3 & = > >
.

o A | uA} . . .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Frames Frames
CIRCLE (pitch) CIRCLE (roll)
14 T T T T T 14 T T T T T
12} 4 12} 4
10f 4 10f 4
Ber 1R]
g g
2 2
3 3
o 6{ 1 @ 6f B
4 g at g
2 g 2 g
o w U |) ! . .
o 200 400 600 800 1000 1200 o 200 400 600 800 1000 1200
Frames Frames

Fig. 4. Circle sequence (relative error).

	1 Introduction
	2 Previous Work
	3 Subspace Representation
	4 Observation Model
	4.1 Vector Quantization

	5 Kalman Filtering
	5.1 Training
	5.2 Tracking

	6 Experiments
	7 Conclusion

