Abstract
This paper presents an automatic traffic surveillance system to estimate important traffic parameters from video sequences using only one camera. Different from traditional methods which classify vehicles into only cars and non-cars, the proposed method has a good capability to categorize cars into more specific classes with a new “linearity” feature. In addition, in order to reduce occlusions of vehicles, an automatic scheme of detecting lane dividing lines is proposed. With the found lane dividing lines, not only occlusions of vehicles can be reduced but also a normalization scheme can be developed for tackling the problems of feature size variations. Once all vehicle features are extracted, an optimal classifier is then designed to robustly categorize vehicles into different classes even though shadows, occlusions, and other noise exist. The designed classifier can collect different evidences from the database and the verified vehicle itself to make better decisions and thus much enhance the robustness and accuracy of classification. Experimental results show that the proposed method is much robust and powerful than other traditional methods.
To whom all correspondence should be addressed.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
D. Beymer, et al., “A real-time computer vision system for measure traffic parameters,” in Pro. IEEE Conf. CVPR, Puerto Rico, pp. 496–501, June 1997.
S. Gupte, et al., “Detection and classification of vehicles,” IEEE Transactions on ITS, vol. 3, no. 1, pp. 37–47, March 2002.
G. D. Sullivan, et al., “Model-based vehicle detection and classification using orthographic approximations,” Image Vision Computing, vol. 15, no. 8, pp.649–654, Aug. 1997.
Y.-K. Jung, K.-W. Lee, and Y.-S. Ho, “Content-based event retrieval using semantic scene interpretation for automated traffic surveillance,” IEEE Transactions on ITS, vol. 2, no. 3, pp.151–163, Sept. 2001.
A. J. Lipton, et al., “Moving target classification and tracking from real-time video,” in Proc. IEEE Workshop Applications of Computer Vision, 1998, pp.8–14.
R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME-Journal of Basic Engineering, vol. 82, pp.35–45, March 1960.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, SH., Hsieh, JW., Chen, YS., Hu, WF. (2003). An Automatic Traffic Surveillance System for Vehicle Tracking and Classification. In: Bigun, J., Gustavsson, T. (eds) Image Analysis. SCIA 2003. Lecture Notes in Computer Science, vol 2749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45103-X_52
Download citation
DOI: https://doi.org/10.1007/3-540-45103-X_52
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40601-3
Online ISBN: 978-3-540-45103-7
eBook Packages: Springer Book Archive