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Abstract. In this article, the problem of real-time hybrid contour/tezture
tracking for planar objects is addressed. On one hand, a lot of methods
have been proposed to track objects from their contours. On the other
hand, numerous other tracking algorithms deal with texture. In real situ-
ations, objects can unfortunately rarely be divided so clearly. Therefore,
an hybrid tracking approach, able to mix texture and contour informa-
tion, appears to be very useful.

The proposed approach is very simple and efficient. It is based on im-
age differences, which are the differences between object aspects in the
image and aspects predicted using a parametric transformation model.
Knowing a difference image, the proposed algorithm only need a matrix
multiplication to estimate motion parameters. This is possible due to the
use of an off-line learning stage.

1 Introduction

In a general point of view, template tracking algorithms can be seen as opti-
mization algorithms. They compute the estimate of a state vector in order to
explain as well as possible the appearance of an object in an image. The state
parameters can consist in information about the position, the orientation or the
speed of the object. They may also describe aspect modifications or change in
the object properties.

These algorithms can be classified in two categories, depending on the na-
ture of the function to be optimized. In the first one, distances between image
primitives (points, lines, b-splines, etc.) and model primitives are minimized. In
the second one, resemblance is calculated between the global intensity function
of the target template and the one observed in the current image.

Let us now illustrate these two classes of algorithms by presenting some
relevant works.

Tracking based on distance minimization. To illustrate this class of methods,
we may mention the work of Lowe [11], consisting in tracking a 3D model in
an image sequence. The goal is to find the object pose which minimizes the
distance between line segments of the 3d model projected in image and image
line segments (maximization of correspondence probability between primitives).

More recently, Kollnig and Nagel [9] propose to track vehicles using 3d mod-

els. The originality of their approach comes from the use of gradient information
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instead of detecting edges. The 3D pose of the model is optimized in order to
maximize the probability for a model point to be projected onto an image edge
point (high gradient).

Drummond and Cipolla [2] propose a real-time 3D objects tracking system

using contours. They proposed to use an hardware real-time rendering system.
It can compute very quickly the aspect of a complex object for a given pose. The
function to be minimized is the distance between the projected points and the
image edges.
Tracking based on global intensity model. The works based on template matching
belong to this category. The work of La Cascia et al. [10] on human face tracking
has to be mentioned. Face texture is mapped on a 3d cylinder, and its pose is
optimized to minimize the Euclidean norm of the difference between the human
face texture in image and texture of the projection of the cylinder.

Hager et al. [3] have developed an approach allowing to track textures in
real-time. It was first limited to planar objects and small motions but it was
extended by Jurie and Dhome to large motions [8] and 3d surfaces [6].

Jepson et al. [5] propose another approach in which the model of the target
template is updated on-line. The model of the motif is obtained by applying
an on-line version of the EM algorithm. This algorithm is used to model the
responses of multi-scaled orientable filters applied in every points of the template.

With the Mean Shift algorithm [1], the object is modeled by means of a color
histogram. The tracking algorithm moves an analyze window to match — as well
as possible — the histogram of the target with the one in the analyzed window.

The main contribution of this article is to propose an hybrid method able
to mix informations about contour distances and textures. It can automatically
take benefits of the different visual characteristics of the tracked template: a
given visual template will be better described using distances to edges, while
another one will be better described using texture. We propose here to use a
mixed criterion. The method described in this article in an extension of Jurie
and Dhome’s works [7].

This article is made of three parts. Section 2 shows the bases of the proposed
approach. The two phases of our method, learning and tracking, are then devel-
oped in section 3. At last, we present some experimental results that prove the
validity of our approach.

2 Main concepts

2.1 Template representation

We will first see how templates are stored in our method.

We suppose that the tracked planar template is made of N points (p1,p2, - .- ,PN),
where p; = (x,y), included in the P vector. These coordinates are expressed in a
reference frame linked to the template (different from the image reference frame),
and are supposed to be constants. These p; points are selected in order to respect
two constraints: being well spread on the template and being placed on image
spots where spatial gradient is high.
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Figure 1 explains these concepts of template reference frame and image refer-
ence frame. In fact, tracking a template is equivalent to estimating the transfor-
mation from the template reference frame to the current image reference frame.
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Fig. 1. From reference frame to image coordinates systems

In practice, the template is split in buckets and a minimal number of points
is chosen in each bucket. Selection is done by drawing points randomly in the
buckets and selecting the ones having the highest gradients.

Each selected point is then classified as edge point or texture point. Classi-
fication is done with the following criterion: let  and y be the coordinates of
point p in the image, and I(z,y) = I(p) be the image intensity at this point. We
define M as being;:

aI(p)2 8I(p) 81(p)
ZpEw sz Ew B:cp 82yp (1)
dI(p) d1(p) 31(p)
ZpEw 8:5 835) Ew 8yp

M =

where w is a square window centered on the point. Let o and S8 be the two
eigenvalues of M. Point p is considered as an edge point if a + 8 is great and
if simultaneously a * 8 is low. In other cases, it is considered as being a texture
point. It assumes that in case of contour points the autocorrelation function of
the surface is curved in only one direction. This criterion is very close to the one
proposed by Harris and Stephens [4] for corners detection.

At the end of this stage, each point p; of the template is classified as being
an edge point or a texture point, written respectively C(p;) = 1 and C(p;) = 0.

Template is characterized by a shape vector called V = (vq,...,uxn) where
v; are defined by:
- y = [1(pist) if C(vi) =0
vi = Vipi) = {DI(pi,t, nz,ny) ifC(v;) =1 (2)

where I(p;,t) represents the gray level value of the image at time ¢.
DI(p;,t,nz,ny) represents the distance from the point to the closest edge,
measured in image I at time ¢. Practically, for each edge point p;, we have saved
a second point n;, and these two points define a direction perpendicular to the
edge. If we have N = (nq,...,ny), and if we call F the matrix describing the
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transformation applied to the template (see 2.2), the new direction is obtained
by applying F on both N and P, and subtracting their coordinates. We measure
the distance d to the nearest edge in the image, which we take as the point with
the highest well signed gradient on the considered direction, moved along step by
step. We obtain the distance D in the model coordinates system by computing
D = m. We denote V as V(p;,t) to show the link of the shape vector with
time and the template vector.

2.2 Motion representation

We now have to model the template motion in the image.

Let p(t) = (p1(t), pa(t), ..., un(t)) be the parameters vector describing the
template position at time ¢. These parameters are the parameters of a function
f that brings points from the model reference to the image one (see figure 1).
This function f, describing the template position, explains how a point of the
model is mapped in the image.

p' = f(p, pn(t)) (3)

This expression means that point p comes to p' if we apply the transformation
f with parameter p. f can represent simple motions like planar translations, 3D
motions (homography, for example), or motions that imply deformations . We
also write V(u(t),t) = V (f (P, u(t))) where f(P, u(t)) = (f (p1, u(t)), - .., f(pn, u(t)))-
We suppose that V is differentiable in time.

We will call object motion the variation of the motion parameters between two
images, and we will denote it du(t). By definition we have du(t) = p(t) —p(t—1).
We suppose that motion is linear in the projective 2D space. In this case, will
be able to represent motions like 2D translations, planar rotations, affinities or
homographies by linear relationships.

Transformations will be expressed by matrix products, after having written
points in homogeneous coordinates. We will write this matrix F(u(t)). Relation
(3) can be written

P =F(ut) xp (4)

where p and p' are written with homogeneous coordinates.

3 Learning and tracking stages

3.1 Theory

Using previous definitions, we propose a tracking method based on the mini-
mization of a SSD-like criterion. Tracking an object consists in giving at each
time ¢ its position u(t), such that u(t) minimizes the criterion:

e(t) =l Vo, o) — V(u(®),2) |l (5)
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where po = pu(to) is the position of the template in first image of the sequence.
We suppose that pg is known at the first image of the sequence.

We are looking for an iterative method that gives state u(t) knowing state
u(t — 1) and image at time ¢. The main principle is to consider that in the
neighborhood of a position of the tracking contour, the relation between motion
and changes in shape vector is linear.

If we suppose that the state at time ¢ — 1 is known, meaning that ¢;_y = 0,

V(po,to) =V (p(t — 1), 1), (6)

V is a function with respect to ¢ and p ; we can write its first order Taylor
expansion as:

V(u(t — 1) + dp,t — 14 0t) = V(u(t),t)
= V(u(t —1),t = 1) + (u(t) — p(t — 1)V, (t) + 6tVi (t)

where V,(t) represents the derivative of V' with respect to u and V;(t) its deriva-
tive with respect to time. These two derivatives are computed at time ¢. We
suppose that time between two definitions is by definition 1. If we suppose that

Vi(t) = =V(p(t = 1),t = 1) + V(u(t - 1),1)

denoted more simply 6V (t), and if we consider that we will get the minimum for
ve(t) =0 in (5), and if we use (6), we obtain:

0=V(ut—-1),t=1)=V(u),t) = (ut) — pt —1)Vu(t) — 6V ()
This can also be written:
ut) = ult = 1) + V03V (), 00 8u(t) = Vi (06V (1)

where d(t) represents object motion at time ¢, and V' () represents the inverse
of the jacobian matrix. With this relation we can obtain the object motion
knowing a variation of the shape vector. The Jacobian matrix V), (t) gives the
variations of the shape vector parameters knowing an object motion du. This is
a N x n matrix where n is the number of parameters describing the motion and
N the shape vector dimension. Jacobian matrix is consequently not invertible.
We showed in [7], and it is an important contribution of our approach, that using
pseudo-inverse VJ (t) with equation:

su(t) = VI (#)oV (), (7)

gives worse results than those obtained by computing H such:
ou(t) = H(t)sV (), (8)

with direct learning.
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3.2 Learning

As we have seen it in the preceding section, we have to avoid computing H(t)
for each new image. Using relation (8) in the model reference frame instead of
the image one, we can assume that H is constant. This is why, in the tracking
stage, we have to bring the image in the model reference. Therefore f have to
be invertible.

We will compute matrix H in the neighborhood of the identity function.
We make Np,,; random perturbations du’ and then we get Np,,; corresponding
values of V. Motions du! are stored in matrix DMU n,. ., xn, and shape vectors
in matrix DIn,.,, xNp,-

Then we only have to compute the "best" matrix H, which is the one for
which

i<Npert

> (0t —Hx V')

i=1
is minimal. This least square minimization can be done using the relation: H =
DMU.DI' where DI' is the pseudo-inverse of DI.

The result of the learning stage, H, is a matrix that will be used to find

motions corresponding to shape vector differences (difference of texture and dis-
tance to edge).

3.3 Tracking

During the tracking stage, we do not really use a prediction stage. We suppose
that the target position will be the same than in the last image. It may be
considered true if the template motion is small. In fact, the convergence area of
the proposed algorithm is large enough to track the template even with large
displacements.

We build the shape vector difference §V" in the model reference as seen previ-
ously (section 2.1), taking into account whether it is a texture point or an edge
point. Then we can obtain du, which is an estimation of the motion parameters,
in the model reference, using u = H.0V. The motion is at last given in the
image reference, using f(u(t)) = f(u(t —1)) o f(0u(t)). f is modeled by a linear
transformation in the projective plane, f(u(t)), and written with matrix F(u(t)),
estimated as:

F(u(t)) = F(u(t — 1)) o F(6p(t))

It is easy to understand that the complexity of this algorithm is rather low:
only one matrix multiplication and some simple mathematical operations (addi-
tions, multiplications, etc.).

4 Experimental results

We have implemented this algorithm on a personal computer, with a numeric
SONY video camera giving images in real-time with a FireWire (IEEE1394) bus.
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Templates are described with about one hundred of points. The transforma-
tion is an homography of the projective plane. Figure 2 shows images taken from
real-time processing. Figure 3 shows the contribution of the method compared to

Fig. 2. Examples of textured template tracking

a classical tracking. The tracked template is a paperboard box with bad textures
but with some strong edges (figure 2, right). This template is hard to track be-
cause it owns some areas that look similar for a classical algorithm. Convergence
area is observed for planar translations up to 30% of the template size. Graphs
represent error between estimated and real movement. Tracking with texture
only is a bit weak (left), when the one with contour only is bad (right). We
obtain the best result with the hybrid method (bottom), even if the convergence
area contains discontinuities due to edges tracking. These discontinuities come
from the use of steps during the distance computation.

In fact, this method allows us to enlarge the convergence area in the case of
bad textured templates. The convergence area contains holes, that means that
for some movements in the area tracker would be wrong, but globally the system
would be more stable than without the contour component.

5 Conclusions

In this paper, we have presented a new hybrid tracking approach, taking advan-
tages of texture and contour informations.

The main idea consists in describing templates with a limited number of
points. These points are chosen in order to be equally distributed in the tem-
plate, and lie on places where intensity variation is important. These points are
classified as edge points or texture points. A shape vector that contains template
intensity (for texture points) and distance to the nearest edge (for edge points)
is then computed. When the template moves, a difference appears in the shape
vector. This difference is used to deduce the object motion.

This method, based on an algorithm well known for its efficiency and robust-
ness, have a larger area of convergence in the case of bad textured templates.
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Fig. 3. Convergence area for planar translations: (left) only textures, (right) only con-
tour points, (bottom) hybrid method
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