Skip to main content

Building a GA from Design Principles for Learning Bayesian Networks

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

Recent developments in GA theory have given rise to a number of design principles that serve to guide the construction of selectorecombinative GAs from which good performance can be expected. In this paper, we demonstrate their application to the design of a GA for a well-known hard problem in machine learning: the construction of a Bayesian network from data. We show that the resulting GA is able to efficiently and reliably find good solutions. Comparisons against state-of-the-art learning algorithms, moreover, are favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The Alarm monitoring system: a case study with two probabilistic inference techniques for belief networks. In J. Hunter et al., editors, Proceedings of the Second Conference on Artificial Intelligence in Medicine, pages 247–256. Springer, 1989.

    Google Scholar 

  2. G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309–347, 1992.

    MATH  Google Scholar 

  3. C. Cotta and J. Muruzábal. Towards more efficient evolutionary induction of Bayesian networks. In J.-J. M. Guervós et al., editors, Lecture Notes in Computer Science, Volume 2439: Proceedings of the Parallel Problem Solving from Nature VII Conference, pages 730–739. Springer-Verlag, 2002.

    Chapter  Google Scholar 

  4. L. M. de Campos and J. F. Huete. A new approach for learning belief networks using independence criteria. International Journal of Approximate Reasoning, 24(1):11–37, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6(4):333–362, 1992.

    MATH  Google Scholar 

  6. G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253, 1999.

    Article  Google Scholar 

  7. D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

    MATH  Google Scholar 

  8. M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In J. F. Lemmer and L. N. Kanal, editors, Proceedings of the Second Conference on Uncertainty in Artificial Intelligence, pages 149–163. Elsevier, 1988.

    Google Scholar 

  9. W. Lam and F. Bacchus. Using causal information and local measures to learn Bayesian networks. In D. Heckerman and A. Mamdani, editors, Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, pages 243–250. Morgan-Kaufmann, 1993.

    Google Scholar 

  10. P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. Learning Bayesian network structures by searching for best ordering with genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 26(4):487–493, 1996.

    Article  Google Scholar 

  11. P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers. Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):912–926, 1996.

    Article  Google Scholar 

  12. B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary Computation, 4(2):113–131, 1996.

    Article  Google Scholar 

  13. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.

    Google Scholar 

  14. N. Peek and J. Ottenkamp. Developing a decision-theoretic network for a congenital heart disease. In E. Keravnou et al., editors, Proceedings of the Sixth European Conference on Artificial Intelligence in Medicine, pages 157–168. Springer, 1997.

    Google Scholar 

  15. J. J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.

    Article  MATH  Google Scholar 

  16. P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 9(1):62–73, 1991.

    Article  Google Scholar 

  17. D. Thierens. Selection schemes, elitist recombination, and selection intensity. In T. Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms and their Applications, pages 152–159. Morgan-Kaufmann, 1997.

    Google Scholar 

  18. D. Thierens and D. E. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms and their Applications, pages 38–45. Morgan-Kaufmann, 1993.

    Google Scholar 

  19. L. C. van der Gaag, S. Renooij, C. Witteman, B. Aleman, and B. Taal. Probabilities for a probabilistic network: A case-study in oesophageal cancer. Artificial Intelligence in Medicine, 25(2):123–148, 2002.

    Article  Google Scholar 

  20. S. van Dijk, D. Thierens, and M. de Berg. Scalability and efficiency of genetic algorithms for geometrical applications. In M. Schoenauer et al., editors, Lecture Notes in Computer Science, Volume 1917: Proceedings of the Parallel Problem Solving from Nature VI Conference, pages 683–692. Springer-Verlag, 2000.

    Chapter  Google Scholar 

  21. S. van Dijk, D. Thierens, and M. de Berg. On the design and analysis of competent GAs. Technical Report TR-2002-15, Utrecht University, 2002.

    Google Scholar 

  22. M. L. Wong, S. Y. Lee, and K. S. Leung. A hybrid data mining approach to discover Bayesian networks using evolutionary programming. In W. B. Langdon et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference. Morgan-Kaufmann, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Dijk, S., Thierens, D., van der Gaag, L.C. (2003). Building a GA from Design Principles for Learning Bayesian Networks. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics