Skip to main content

Selection Intensity in Asynchronous Cellular Evolutionary Algorithms

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

  • 1519 Accesses

Abstract

This paper presents a theoretical study of the selection pressure in asynchronous cellular evolutionary algorithms (cEAs). This work is motivated by the search for a general model for asynchronous update of the individuals in a cellular EA, and by the necessity of better accuracy beyond what existing models of selection intensity can provide. Therefore, we investigate the differences between the expected and actual values of the selection pressure induced by several asynchronous update policies, and formally characterize the update dynamics of each variant of the algorithm. New models for these two issues are proposed, and are shown to be more accurate (lower fit error) than previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Alba, M. Giacobini, and M. Tomassini. Comparing synchronous and asynchronous cellular genetic algorithms. In J. J. Merelo et al., editor, Parallel Problem Solving from Nature — PPSN VII, volume 2439 of Lecture Notes in Computer Science, pages 601–610. Springer-Verlag, Heidelberg, 2002.

    Chapter  Google Scholar 

  2. E. Alba and J. M. Troya. Cellular evolutionary algorithms: Evaluating the influence of ratio. In M. Schoenauer et al., editor, Parallel Problem Solving from Nature, PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 29–38. Springer-Verlag, 2000.

    Chapter  Google Scholar 

  3. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69–93. Morgan Kaufmann, 1991.

    Google Scholar 

  4. M. Gorges-Schleuter. ASPARAGOS an asynchronous parallel genetic optimisation strategy. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 422–427. Morgan Kaufmann, 1989.

    Google Scholar 

  5. M. Gorges-Schleuter. An analysis of local selection in evolution strategies. In Genetic and evolutionary conference, GECCO99, volume 1, pages 847–854. Morgan Kaufmann, San Francisco, CA, 1999.

    Google Scholar 

  6. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 428–433. Morgan Kaufmann, 1989.

    Google Scholar 

  7. J. Sarma and K. A. De Jong. An analysis of the effect of the neighborhood size and shape on local selection algorithms. In H. M. Voigt, W. Ebeling, I. Rechenberg, and H. P. Schwefel, editors, Parallel Problem Solving from Nature (PPSN IV), volume 1141 of Lecture Notes in Computer Science, pages 236–244. Springer-Verlag, Heidelberg, 1996.

    Chapter  Google Scholar 

  8. J. Sarma and K. A. De Jong. An analysis of local selection algorithms in a spatially structured evolutionary algorithm. In T. Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms, pages 181–186. Morgan Kaufmann, 1997.

    Google Scholar 

  9. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in cellular automata. BioSystems, 51:123–143, 1999.

    Article  Google Scholar 

  10. M. Sipper, M. Tomassini, and M. S. Capcarrere. Evolving asynchronous and scalable non-uniform cellular automata. In Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA97), pages 67–71. Springer-Verlag KG, Vienna, 1998.

    Google Scholar 

  11. M. Tomassini. The parallel genetic cellular automata: Application to global function optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 385–391. Springer-Verlag, 1993.

    Google Scholar 

  12. P. F. Verhulst. Mem. Acad. Roy. Bruxelles, 28(1), 1844.

    Google Scholar 

  13. D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, page 658. Morgan Kaufmann Publishers, San Mateo, California, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giacobini, M., Alba, E., Tomassini, M. (2003). Selection Intensity in Asynchronous Cellular Evolutionary Algorithms. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_107

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_107

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics